{ "cells": [ { "cell_type": "markdown", "id": "5bb3bb74", "metadata": {}, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": 1, "id": "ea7fbe73", "metadata": {}, "outputs": [], "source": [ "from numpy import array, arange, zeros, transpose\n", "from matplotlib import pyplot, rc\n", "from math import pi" ] }, { "attachments": { "System%20Model.jpg": { "image/jpeg": "/9j/4AAQSkZJRgABAQEAYABgAAD/4RDoRXhpZgAATU0AKgAAAAgABAEPAAIAAAAIAAAISgEQAAIAAAAKAAAIUodpAAQAAAABAAAIXOocAAcAAAgMAAAAPgAAAAAc6gAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHNhbXN1bmcAU00tTjk4NlUxAAAGkAMAAgAAABQAABC2kAQAAgAAABQAABDKkggAAwAAAAEAAAAAkpEAAgAAAAMwMAAAkpIAAgAAAAMwMAAA6hwABwAACAwAAAiqAAAAABzqAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMjAyMzowMjoyNyAyMzoxMToyMAAyMDIzOjAyOjI3IDIzOjExOjIwAAAA/+EJnGh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2luPSfvu78nIGlkPSdXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQnPz4NCjx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iPjxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+PHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9InV1aWQ6ZmFmNWJkZDUtYmEzZC0xMWRhLWFkMzEtZDMzZDc1MTgyZjFiIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iPjx4bXA6Q3JlYXRlRGF0ZT4yMDIzLTAyLTI3VDIzOjExOjIwPC94bXA6Q3JlYXRlRGF0ZT48L3JkZjpEZXNjcmlwdGlvbj48L3JkZjpSREY+PC94OnhtcG1ldGE+DQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgIDw/eHBhY2tldCBlbmQ9J3cnPz7/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAXKBBEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD6BODmmtjbkDmnN6A9abt59a4joG52/WkbJbPU07+LH4UuOnX0oAjXpTuMin7cjng03H1PvQAb/mI/OnZG3ik+8KdsHGKQCDAHPNN4z/OnkdDSdCM/SgBoUZ4pSBuC9qfwOlJtz+lIBNvygD1zQx/dS/7p4/CpMd6bMubeTsQpwfwpjW5z/ghQtje4OALhhnpXQMu7+frWD4IH/EuvMjB+0Nmuh2/n9aEEtyHHzAgc/SpeWOc0oUZPI9qUfnTJYBc/TtzThlenT60oUYpRg9aAQnPXvSqSTyeaPelUZJPWmSGDkU4nGPagYzQ3PtQNEckYYgnrSouOQOfanN2zR1wMcfzp3ECsOOORRuNKF6+9KexHFADRndk5Ip3zNznpTlx6UuM9KADk+9C5xn1p2OKcvfsKAE/ipdxXkc0UFc8UAJyOn40MoPTg07H/AOqlxQA3pxSH8qeR1pmBjmn0AXGP/wBdJt+alUFu/wBad2pAM69BkGl25pQuTwcfSnAeo5xTAbjp61JtxRj5sgdKXk+1IBMe9O2gjihunpSr0qkA5fbpUgpqr36U9fm5oABXOePD/o+mHOB9qTP510n0rnPHS/6Npeckfa4/50mNbnTN91T7UmBnFPZcKueeKMc1SIGbaXb+NLTsUCEVflp31pF+9xTvU0DF7Uvf2oPpS/rQAUjflS54pjSD1oEL/KnU3rg96kWgQKCOKPujJP0pV60u3dmgY1aRgfpTume/pSke2aaEMXt2/pTlXJpQtOUdhVCFI2jkYp/HHrSY/Gl2nP6UACin9vUUgHbrxTggoAVOnPSnfw9KQccUAdaAEVe9OVfxoWl+6elBNxy9vSnU1eeTTj+dAwJ4p3HamdSKdjbQIQ80c8Yp2D1oPoKdhDxjb0zTsUiYpeemaQBt/I9aceDjrS4wuaTNAGJ42Xdo9vntcxn/AMerat/mhTjqKyPGX/IGiPpcR/8AoVa1r/x7xn2FBp0JsAc0Gj+Kkzz60GY7bRSjtQKAFHIpabu28E09etACY/Sne1ByOKAKAF/lT168U0du1Oz6dKAEp/XFN4pwoEO64+lH1FIM05e/pQMNuenWl20vb1o9aLivqA/SjG4Gj60u088/WmhjRS0DijmmSG0emKXnnigdqKABactJ14PFL0WgB/T2pajU809W5oAd2pVpvXNLn3oAfSZ9qFPrS+1AC7uORTumAKRR+VG7HSgBVPU0ZBpqmnCgAUfNTxz1pKB19aBEg+7zyKXjj0NNzxilxQMT+VKFyPWj+dKDxQAg+9WRcLt8Tn1aDP5H/wCvWx/ERWReYXxJEc/8sT/Ok9ho0to9aKduorMZ4PyvJ/Gn7uelNzuxTtu0YrNnWIo3HjrTWz6/rSn5cYIpud3fNIB6g465oYHgimBuR34p5Yjp+VABHnB4p2So4pm7njil3bu1AD/5UjAMc5/KlPPFG7aRSAFxR26/hS9iccGmqQcjNADj6YpJAfssoHXacUuPzpsxP2WYY/gP8qBrcw/A7f8AEvuh3+0PnnNdAw+bjisHwMobS7llXANw9b5z0xQgk9RvH0pe4BpvGPbvTvu9uKZA4cDrxTlPHSmMwXqRimiYbjjnjNUDJ8daTbSQuJFJB3ClZwATnAHWpEOXAUc0707VUS/hmbarKSOoHWpmkCxFyaoB7d+9NUd+4rOuNaghbLSAAHB5q5BIJo1kQ5VhwaALAxS8HPek6cU7HtzQAfpQGGcU+kC+lACjOM04D5cUKNvFHTA7UAKe2OlC0U5RigBPwpCeRRg7s5ob2pgI1CqSvrSdTgfSngYHWmJDejYxxTtp7UuKdgKOtShjV5HHFP20nrk1IOlMBoo685pxUEGkx2pAxu0/5NSgEYpFGOaePaqQkG3HPan/AKU08j2p3setMGOXpXO+Olzb6X6i6Q9a6JR+ftXOePFPl6SB/wA/aVLHHc6jsPpQoO4dKU54PrTU+9mqRLK0moIuqCx6Sbd4+lWZG8pST+dZmtRiHXtNujwGVoif1/pUutSRzaXdwmQKxjJX1zjtT1Jv3LSSA4YHipu3FcpHezf8I5p86v8AMrqrn9K6K+vDa6bLc7dxjTcVHpQO5bDdTSKwbODnFQ6XdLfWMUxGA65xWVaXEml6xJp07FlceZDIe4Pb8KLAaF5eGOVIY13yN/D7VTuria1uYFJDFmwVrXWFGuBKVHmbdufasi40u5juGvVdZZF/5Z47e3vQI2fu570oFVbC8S8txIp4PWrgx9KQWAdqdt9KOnSlVccUxCbefanbe9LgcZo7VQ7MMDilA20ijcOKeF9KAGsuKVQcetDY/CnD2oEC/e4FP7UirjkUvWgBf0pffrRt9KXbQAsfPalbnNIvy980H+tAh6gdcc0vtTdp5xSjrQIULT8dKack07BGKBsO1G38qKcP0oJDHb0p4O6mrycdKfjpigYmcim07tijGWAoEY/jJd2hrk9J4z/49Wta82yfQfyrK8Ygf2CM9pUP/j1atn/x7x/7o/lQadCRcjrTuCenFJtpwXA9aDMX19qXtikXP4U79DQAbcUqjbzTsUe9MBMn8KUHrSfeHNOUUWAAecUvb1pPwx6ULnnmkAu7oKf9aaq0vU0AO204f0ptOXvQAq9++elLTe9KehoAXPPrRSDjvxR97p0qiQx2py/zpv4U5cAe1SA4YpG60m4/4Gl+8OvNAWDPrSijFKoK4qgDb607GM0lBGBQAvtS+9J2p2aAFT6U/HSmBsU5cfhQA9eKbtz9KF780vPpQAgp1GKTntQA73NLnPahSKQt3BoAdu/GnLTF6Uu4dKYDuelOJAGaavr3pd1IBw/WsfUFA8Q2xPP7o/zFbP6VjamSNds27bDn86mQ0aW72opN3uPzoqBnhfRsdDS53Y9vahvfNNyVPTntWR1gyll5zSLlc8dKkVsr7UZH1oAYqjinHCjpmj7vegMd2MGgBpXb06elPAO0mlzxk0bBt4PH8qAHLzwRioI7hGuni6P/AHTVhcKMVFNbpMyyH5ZV6MD+hpDJcepo2UBs4B64p9AhvsabNj7LNyB8pp/J44xUdx/x6z5P8J/lQPqYvgj/AJBdzjB/0hiPbmuhjPzY/Suf8E5/sqYg5BuH/nW4PvYPFBMtzmF16bSfFlzp14uLWRQ8U2OhPY1r6xeeTp07QHMm0sv86peIohB4g0q8dN0EpMEgIyBkcZ/KtWHRbWGYON4x0jJO0fhVIk53StXn1SK0811hkkyJF6EHHQCum03Z91DuGMFia5bVvDsy3VxNEjqI5BMhXuDwQK39PvEZUSBG+mKvQCro8/2PWtQtHY7dweMH0NLJqMn2m/tj/DHvQ1evNBtrrUFvGZ1k2bGCHGap6lpZt9QtLu3RimfLlUc5U8ZpaCDw/psMmmRysCJpMkyZ5HWp9UjnhsJ4Qd7bdyMO/wD9ekt430bfCwLWzHMb+g9DUyyfbJozglVOc0rjMnSUtZoI/LtzNLjLMw71tWlynmeSF8t1/hpL61e1tjJYxAOrbjGONwrPhuG1LUreSNGR4+HBBGPam9Rm+vzdqeF4POTQwCk96B/WpQC0q0n0xmjpxTEP9fWlINN/Cnjlc96AE7inLk0nTg07P50AMFKe1G7a4B79KccNnPXpVAM680rZFO6H60jcf0pXAaM805eaNvcGl6daQxfY8U4Hmm59OfxpOOcGmIkWgKe/ehe38qdx1FADse9JGM5NG8buaXd3NMQ8UvVRTPMHrinb1GOcmmIevTpXOeO2IXR/X7WldEjD+917VzPjqQD+xu+Lxc+tJjR1nG3HtQMdevtTGf0+lO3Dd1qkJmd4st5LjQ2eLJmhdXXb+tT6ZpkEVrGZFMjyKNzNzVvzF2MvUdDxS+YvHpTJsZdnoIXT7qykYBHclGHbuDUCTzLaTWVzExcoUBA4b3rbEgOad5ilO31ouFjB8PM+l2EVlcnbLGuOehHaptTjF5qWnFBukjfO4dhitKaKC6wJk3kdD3pYbeG2YmNQp9aLjsT4+bFZy6oYdUntpRs2jch/vLV/euMk8d6gvLS31CSJpU+ZOjZwam6Ap6BCc3bgfumkJTJrXX1pi7Io1RAFVewoEwHB60XuBMv3fehW/Co1lXb+FN80KvvQMscYpR1PeoVmHFK10qd1qxEvTinCoUuEfjP608zLzkjH1pBYfgdqGO2olul3HGCMU37Qg6kA+maYrFoN0pQMciq/2pMAbhn60G8VeNwNILFrvS/Sqv2tP76/nTxeJj7w/OmFiwKXAqt9sj5+cAdKT7cnPzj86Balo+9O29+9VReR8fMOfen/AG6POPMU/jQFmWttOx361T+3J2cce9ON9Hg4cdKB2LPU8dKdVNdQibgOv0zQdQi6BxQTYuKTxxS7j9ao/wBpRbvvr+dK2qRHH7xfwNAF44HWgetU/wC0Yc8SKfxpn9qRLwZF/OgVit40/wCRef8A66J/Otazz9ljP+yK53xdqCTaBIEkUncp689a1bTUoVtYx5qj5fX2pdS+hqDoKVTWb/a0HB85TSnWINpzIooJsaY4orL/ALYgUA+YM/WlbWLfd/rFOe+aAsa2OKb2NZv9sW+0fvV/Ol/tq3X/AJaDmmKxp+lPY8elZH9tW3TzVz9aVtcgXAMg9MZ60XYWNP72eacvfmsb+3rUMQJhx707+37U/KJl496bBI1u+elPXPJPWsZfEFtuP71frmnf8JDaH/lsv4GkFjYyPWnr71hnxBagHMqD8aP+EktQp/fLwPWgLG5xnmlXmsNfEVr1EwOfQ0n/AAklov8Ay0Ab60xG5u9utO7Y61hr4ktccygfU0v/AAkdtjiTd9KV2HKbQ460bhWM3iKBhwxPf7ppV8QW+OCx/A0wsbNKD/nNYX/CRw8nLf8AfJpw8QRZP3j9FNIDe3baN34Vg/8ACQR+j/8AfJpT4gizjbITj+4aoVjd47U7d7/nWAniBccLIT/uHFOXXg3SOXP+4aWoWN7HoKATWGNfBO3ypT/wGnf24evlS/8AfBphY2yw+lKrDb1rn21x2GfImwf9ilGsy/8APtOf+AUDsdCD+FLu6Z7Vg/2tNjAtZySf7vWkbV5yxAsrgn2XpQFjoNw9eKC/4VgnVLoYxYXGP92htSu2YkWNx+QoFY3/AE7Gl3e9YI1K9yT/AGfcH8B/jR/ad7/0Drgn3A/xoCxvZ9uaRT0rEF5f9fsEo/EUgn1I9LFsf71MDeDZ6dacrBc5wawvO1T/AJ8if+BUu/Vev2L/AMfpCsbpb3xWRq7gaxp49VINRbtVb/lyUe5es7VF1D+0LJ3t0WTBCAPnNKWxcVc6baPaisbbqf8Az7R/9/KKzK5TwVvGA6Np94uO3kMf5CmL48td217S8Uj/AKdZOP8Ax2uo85iv9KRZDkZHH0rCx1aHOL44seDtuAucfNbuMfpSf8JvpzSfedT05jYV0wbLY2ACmlY25Ma/kKA0OebxrpY+9OM+4NPXxppSf8vK/U1t+TDtwYI/++RSRw28mc20XXGCoosP3TIbxrpjKD9oQA8ChfGulbcfa4ff5hW01laMpDW8eO/yCmDS7IqM2kAx/wBMximLQzP+E00rcAbqHB/2xTx4v0z/AJ+oTj/a/wDr1fXSbA5/0KH/AL4FJ/ZOndrGE885QUD0KLeK9NbkXUWf94VJ/wAJZpqk5u4V+rCrP9i6cCR9ghH/AAAUf2Hpjf8AMPgz/uCnYV0Vx4o088i6hJ7YaorjxPYNbyp9rjDbT1YVf/sHTdv/AB4w/wDfAqDUPDuly2M+6xhIKHkripGrNmB4J8QWkOkSrJOqETvjc3JGetbv/CSaf1+0x7j23CsnwboOn3Gh/vbOOXZK6DIyQAcD9K3I/DmlRDiwiGeo20ahK1yFvEGm3MRSWWJx15I/OpP+Ek0/fj7TH0/vCn/8I3pQXb9ghK/7tPHh3SmBBsYeT/dp2YtCL/hJLFf+XiPHI5NA8SaeuCJ4xu9COTU7eHdK3N/oEB/4BUbeGdIYbTYQsOnSqFoI3iSx6CdOO+aX/hIbNc5nVV+tOHh3SjkGwhbPB3Lnj0py+G9JVgw0+DeBjOwUg0Gf8JHZBcGZdp96aviKw/57p+BqdPD2lRj5bCEDv8opzaHpmQTZQn0+UUC0Kq+J7FZDi5TjtuoPiawVlb7QgJ+lWToOl4XFjFkf7I609dE07/n0j9fuiiwtCk3iywVQPtEefrS/8JXp5A/0iP65FXRo+nf8+UPrnZSrpdiuP9Dh/wC+BTsPQpf8JVp4P+vUjrw2aafF2n8ZnWtT+y7E4/0SLP8AuinHS7L7v2SHHsgoDQzF8VWDYxKp700eLbAEjzf1rXXT7QHH2aIkd9tSJZ2ueII/++R/hTsPQx18X2PH7zimN4xsgxXzOfpW6trbjH7iP/vkUn2a3ycQR4/3RSsJ2MD/AISq0aQMHbHpinyeMLbd91+2flPFb4hh248pP++RQscYziNR+FMVzm5PF8DDKwzMRx/q2/wpq+KxIDstZyfeNh/Sun2rjIRc0ucDG0CiwXOb/wCEolZTssbh8HBGw/1py69dM2Bp0+fpXSeZk9RnpS79vbNAjnF1y/kxjTJs/SnLqmptuP8AZso9Acc/rXRiQ/iaduIoC5zn2zWWbK6ey/7zCnrca6zY+wqDj+/gV0W5u5oDUDuc7u15mGbWMep8ypCuvbR+4i/7+f8A1q6HcaOc9TVIm5z6w69uJKQAf72acLbXWXB8kfjXQglR707cx4JxTDY51LbXVYZMOMepqtqnhvVtX+zCaWFTBKJVK55I7V1PO7OaeW6UBzWMNrHWsn97CPTrzSrp+tHO6WHPbnit373PalVs1QjD+w61082EjvnNIdO1pgMTxVujIyetOBNBNzD/ALN1lus8KfgTTRpesZYG5hC/SuhHakoHcwf7L1hnP+lQ8f7Jpx0fV24N7EoPopNbbNhf6U5csvSlYVzD/sXVMf8AH7F6/cpf7D1I/wDL+oGOy81tsSe1C9vSiwXMRtAvm4OosPwFI3h29K4Gotn/AHRW6q/lTtuOetFhtmCvhq5Iy2oux+gqX/hGpjknUZCfoK2M9aeq4pk3Mb/hGZM5N/Ic+wpR4XLdb2U+vStnJNOTr060BdmMPC5x/wAf0uad/wAIyGAH2yX862P1pRn04oC7Mn/hGUVcG6mz7Gmt4XibBN1MT0+9WyPf86DgUwMv/hFodgBuZjj/AGqafDNu3BmnP/AyK2P4etJ1+tIDKj8LWq5xLMd3q54qX/hF7Xn97Nj/AK6GtJVNOzhqYGX/AMIzalT+8mP/AAM0f8IvacEvL/32a1UXg0tAXMweF7MjAeXH++aX/hF7LOd0vHON5FauBS+tArmUvhmyHeQn3c0v/CL2Q6mQn3cmtTbx0obj86AbM1fDdj/dcj0LdKd/wjdj0CN/30a0lFL93rTsTczf+Ea08H/VH/vo0Hw3p/aMj8a0+3rQv5ikBnDw3p69Ij7804eG9P2/6rOfc1f74PSnCgZRXw7p/eAEfWnf2Dp//PAVe/nSn6UBdlA6Dp/e3XNPXQ9P7269KtbeelKf1oFcrroen7uLdeaeNHsef9GWrC/TmpOO9AFVdJsgP+PZPyFOGk2XT7Mh+oqyF70vHGaBlddMs+n2dPypTpdnj/j2j/IVYXGM0tAisum2na2j/IUv9m2ag4gj56/KKlzz0px9aoCFbC04xbx/981J9htu1vGf+AinLxx3p3t2qQuM+x23/PvH/wB8inCztx/ywjz/ALopR61IKAIvssHT7PGPwFC2dt/zwj/75FSmlHygmqERi1t8Y8mP/vkU/wAmD/niv/fIpfwpT70gEWOL/nkgH0pwii/55p+VM7in0xXHeXH/AM81/KkZY84CLn6Ubu1GO+aAuOVUHGxQPpRtQsDsX8qTg05fpigLsNwXoop6sFH3RTPWlxQIeG5+6KUN7CoxjcKXIAzQMkUmgMaYpz9KdQIfuNJuOfem9qZ/GDTAn3HikLdeabz+NKoweTSAduNLuJ5B5puOKXscUCF8009WPf8AOoVUVJQA/J9adv7Co1x1FPxnigB24nvWPr2VvtLP/TQ/yrYFY/iJttxppA/5a8/kaTKRobveioty+tFRYo8QRcZP5VJ/D/8AWpikqR1Gak9RjmsWdQ1mI70m7d1FOPQjg+tRAZk3d6AH7SVP0ojG3/8AVTlG5f50vHc+1Ag249s07k8dKRR60/HX0oGMCjr70uOOKIweKXJ/pTQAOafgfhSfwj260N2p3AQHdwabeAfYrjB6oePwpfun2pl8d2n3GP7hwfwqbIa3MfwGv/EgIb/ns55HvXQYNYXgn/kXw2DzK/8AOt3J5oQPcQ/LQrfKaPvdenrS4A7ZqhDdzZ6ZFO4NLlRz6ijsP6VRIdTlfxpw+akK5brxSjPfpUgO6Dijb1HrSdc4pf1pFDiOOOlCgDOaTd6jFSLyAccVRAm0c96Bzz0pTjpSRikMXbzS7cNntTl/SjgDGeaBCH73XinDH402nKtUgFXjPem4PWn9KTHtUgLk4yKbjj+po5XPrS/eqgEpeeB2pOeOcClHemAu3inY9aOmaOn41ACBTn1FP69etIvzUBvmoAcM8inehzj6U3p1pVByelVYB+3mndOvSkX3p3HpT2ExRnPtTjSZBwOlOYZwD9aAEHNO6cUAe1O6rz1oECrQy88dqVffrS9/SrARc80vOaCp3dOKPQe9BLHjNNb5aXrTtvT1oERj71SKwpNvp+dG3FAC4J707G1eB2pMdqd+nFA0C/dBp3bmmrTzQAgGPp2pRzR68cUetAhe1Ko5x3pv609f1oAft5zScnvmgCl2+gNACdKKXae/HejHWgBOfoKeF/Gk9+1KPzoAdk0xskinYpVXFAD15FHr60LxS4J78UAKtO6Ef0pPYUhU+lAhxal7VGo6/Wn/AHVFUIVqd6Gm8fWn/wAPpUgIo49KX2FID7UcZoEL60L6mlHQjpSBd3JoAcOfrSsfzqMDLfjUvpQANx7fSkYfhS/hml6delAAqmpAOlNHpSgbqAHbtoo5NGKPWqsMeMKOlGRSAdKdigQnHHrTj3poH5U5l/E0AM2/NT6rNcIk4iLYc8gVYXJGKAHU7dtUUw9PpSBt3WgB+R1py/nUa9eelQXF8kMgQnHHWlqBcz2pR371BHIJACOamXp7UAFL0Wk7+1OOTnHQUxCL1znNDE1Xjukkk2hhmpx93nimIeo3U7t6VGrDOBz3p2Ru9O9IBe1AkDd6q6leC0iVUXfNIcKtVdLaVpJ1lILI+OKYGuuO1GMmmjpnvT1A4yKQxe/86XNV7q8jtpAjNhmGcU6OUSAMOlAibnPNG3kHNIKVefeqQDun9aF9SaUAY6dKFXpx9KkBDn/9VO3YxzULXCKxTPPfmiOdJOAeaYib+L9Kerc4pi844p54wKQx2R0o6ULn6UuOfagA3dBWX4k+7YN6TDmtXnmsvxH/AMe9qep84UDRZ/AfnRTc/wCyaKko8W9f60n3R0/KkHTOPzpS24iuY6ULkN2pNvzdaTdg8dqFB+8Tz2pjF+70FKqj/JoUiT3Ip23v2psBc4HSl/WkySuDTkPHSkA4fdNN4X607t05puegxQK4DPA/Kl6NxSqOh9KM/NjtQMD81V9QG3TrkjrsP4cVZ2tj0qDU2H9m3O5cfuznP0psS3MjwMT/AMI5E/XLvx+NdB2NYXgkf8U3C2OrscenzGt04bH6UFMTgdaXb3HbrmlYY96VT7UxGHe60v2kWsJDTdlyPzrTjke3s98p3uq5YqDTZtGsJkdntY8sdxZRg59c1SsZJNPuI4/MM9rIcKzfeU+lURaxpWN9BqNuJoXWRT3XmoYdUjkW4IBUwHD+1NXQY7e8a4s3NszHdJCB8jH1x2qDRV33GoCVR8zgEdjxSGP03Vv7SmPlhTD03g1oXEy26lnO0eprJ1Sxit2Etkq291Ed2E4DD0I71dNmmsLbTyFvL28xjv8AjQBDHfPfZW3BbnG7GAKtteLbosbPl/QVQ0UvDcahat83lNujx/dI6VS0KT7RJcOFLyrKV3N0XB7UxGxqWqRaXHBJctsWWQRqe2ScAVpDAHy8jrXL+OrU32i26DkLPGSR2wwwat2a6qypbyosQXhps8MPUD3osFzWtrqK5kkSOQMUOCM5qw3PHtWBpNqNL8QXdvlmDosgZj1OcGugQfMOKQDV6heN1Sjpk8VyXii7udN8UafcQlngKMJoV5yM9R9K0rnVv7QtZIbBjJNIh2lexx1NFgNlmAIPb0p64YjHNclZXlzfW2nWskxS4csk0g65HBxWtcyS6DiVma5tSDubqyGnYVyRtatv7QFo0gWY9BV9mWNcsffmuS8NrD4n03VrhVIf7QWicjBVgKlu9WWZ7O3nfyVkU7znHzL2oC5vrfRySAKdxPpVndsxnv0qhYxL8nkx7Ix1bHWofF/mw6XFNEWUxzISV/u7hmmM2OP1okdYlyxAHvTFmVsHPUU64t47q3aOQbkPNSBIrZXPc0v3qq2c8U8JEL7lQ7cZ6VaoAdjoKUfKcChcjFO2/NxVIB2Ov170EYo7U7nGetMAyP8AIqRSMDvTGA/+tS9McUEki+9LQvvSnFA7guN3SnBQeaOtL93pVEic7hzSDrg9afRt70CsLjvRtoX5uP1p23b9aB2CjrnBzSGmgndzQIfnJx2oPvyKVVz15HrTm4oARewx9aKWjAwTQAvWhep70fhRyvNAhyqN3Xil+vNIPmxx9aX6cUAOX71O98UxSPSlGc9OKAHfjil4xTM0ufxFAC54oUg/Wg8896RV59qAJPTFIB6HNKvT0p6gc9qYDVzS/oKXninbeKQDd3UGhjhaGHbFGDQSKtPYHFNU+tObjrQAcL70elAbGeKBnFAh2/nFK3Smc08U2Aq8D0pc5pNoPalxSGGPanHNN3U9fzoAFBoYdKVTxTWp2EPpy03pyaUGkAp4HvQOnNUbjVIYbgxM+GFSRX0cgGGzVAXV5PXFKxNRxybuKcp/KgBJ94s52j/1gQlay5tcjsdLjuJT8zDAXHJPpW1DhjgjIIxXITaPvvL0H55LZg0MfOAuck/WmrAbOj2cjs15d8zyfdX+6K1R96qNjdpcRqV4PTbUtxeJaxh2PfH40AJqlw1vpszocPjAqSxjKW8YLb2xk0y8hN7p80S/eIyP50zTrgTW6c4ZRhhmkSxb6aU3SwQkDChmZulQ3DmGRBN+8ik4zjofSjWI5PME0T+WrAKz4ziqs8cTW6W8bPcyuw5J6c5zQMstmwnjwcwSHAz/AAn0rRlm8mHfgv2+UZqnrEO2xt4ycsZFq/GhjTkEkUbjK1rdGd8bWx7jFXZ4xNA8ZJUN3FVIppZW/wBSVGfvNRqbSsIUSXyk5LyUCIbi3gs5LYQqFO7HuRU2qXDWdiZYwGfIUbjgcmsi2S6+1LcSK00IGEbGPxrZ1K2N5plxEow7Kdv1piKWn6k0km2ceXJ1x2P0qeS8f+0hEMbCgK1YjtUmto1nTc238RUF5p/lyW0lvGWZTtbnnBo3ER6pcR2t1FcSHGI2C8d6i0W4Ty2YsDK53NzV3UrU3C237vzCj8r14qleqq27vtCSI2EA69aroM2lbcpPQVUt9SW5ujHADJj7zDpS3Ucs2kShflk2bhSeH7VbTTYVAwduSe5PrUALdYj1QGQfK0eBml0+RGjkI4RWOOO1Ra9m8MVrBn7Rndu/uj3plnDdWKrC9sXXpuU9aqwie31NLhzjIUHAPrU1v5izOXdWBOV+lZV5p4t5pHUGNusYXp7g1dt4Lj+0EkIIjaMZz60xGnJKsabm4FEcyk5HUCsZtOu9RumiuGK2sf8AFnG70qa2kOnM0E2Wx91sfeFIZiyTQSOQwlluWJJ8vPHNX7OObTpUDhlilOFDnJBqWPOmzSs8REcjbldV9fWpNz6tdwbYmWCJt5dgRk4xSCxrRtUopmwL/SnKM0hjuvtT1pnSnjt2FAC1l+I+LGBj0Ey/zrUNZnibH9mxH/psv86Bodvf+9RSbqKCjxpP9Wcn9KaFK57mlHr2pPvE8VznUCfe54NOb5mGDg0mPlJpQvQ96kBVHf8AOpM/Lg9Kj+77etO+bg9fSgAPK89PrQufWgruGPzpSu3v+dNCHewo56jNNwducU5W6d+/WmIBkLk8U5Qd1JztGRz0p4B7CkUKxK1W1b/kF3Jxn5D/ACqy3qaq6wQ2k3Xb5D/KkMzvBS58MWh5Gdx5+tbQUd+tYfgdmHhWwB/uk/Xmt1c96aBi/wAPFKo9qAORkYFO4z0oJ0GswRfmOF6Vl2tmYphHJIjwqxZTu5POcGtG7tI76HypA2M9VOKz20GxyBvl4/2zVJCNRbiMNnK1Ss4obO4uJFlB85t20kYHFQNodlwf3n/fymtpVgFLtuwOM76dibjb5JDqSTQSx+Uy7ZFYjj3FXVvILWJEEihV4qr/AGXpfBdFc9i7ZqSO10qNv9VDkf3jmnZAmQm+soL+S6WcB2XDDPBArOWSOGaYw36rDIxfYRkjNdEqWW0YihYD2FSeVZnH7iPH+6Knm1GZUWqWUdv5MkwmTqS3rU6eJbQHHm5HTOOlaBjto1/1MY/4CKarW4/gjIPsKofzMi8v7C8uorj7WIJo/lDZHzD0rUt9YtjgeejHHPNS5tXU4SNvwFRvZ6c6nfBEfXgUCIb62i1C/sLqORd0D5PPUEdK0o2hjbcqorewArIbTdMz8v7r/dcihdLtd4xczY95DigCCbQ5PtMskUqoBL58R9CeoPtV0SXV0pguIkVWGCytwaa2k2y8/aJfqZKibT7NXB+1yhh6SGgm5HpdnH4Va92sTDPLvRVHTjmqtxpj3Sx3scaPLHKZFhfHKn+Rq6bOw3c3bt7NJQLXTtp/ftx/tmmPUkt9RupEwLQxjOPmIFaEipe2LwXABSQYYVktDpzJ8s8mP9lzTWt7EdJLgj2LUhlu10uGzdSbmSQL03sMVof2hAqkGRMdMEisRrexcHK3DfnT/sti2FGnySH3SkBp6e1pao6wlV3Nub5qlk1CFMZlTr/erI/s22/g0qRCeMrgf1praHG4P/EpVzn+Js07IR0UMqzRhlYFfUGpF64rJtI7q1jWJLNY41HChulWbGe5a8Mc0DRpjO7PFAzRAG4YpwYYPrTf05xxSgeozQAp6Zp0ePWhsDPHFOUDpTYheOlOpq9cU7HzUxDhTtvem/SnNjj0pgKDgHNIG9aX14oxQAL1OOtPzlQO9IFH0o6fWgljelLt+YmnAZbnvS8LQAi+gp2d3Io9x+dGPagBfYClb7vHX2pq+tP4x0zQMOuPWkJ9qUfpSKM5oJHL6UetCjNBoAQfexT1z06Ug46jinFe45oAaMdKWgYznvTsdPSgA/lSr6j8qQdhindOvQ0AOX5u9Lz60go9aAHHnmjdQtGM/SgAPI60vak256805RxTExFxmlk5U8Zpfu9qG7E9KYrDV7U/7v0pN1J79vSgBw+lP/hFN6Ypxz9aAQudo4pF7+lKuaU+lIAHrRu4xSA/lRTEPWl+uaEqtqWoR6dCHYctwqjkk0AWWYBTyKrSalDG23zAT6CqlvZXOoqJLpmgiPSFepHua1Leyt7RdsUSjnrjk0gKJv4nyzRN9WSpVsbe6i3eWBn+JeKult2QwGOhqJoS0ZSM7OOCKYFCzuHTUntN3mADIb09jWrzVaxsYrEN5YLSNyznqatUAKvytS/Z4xcm4C/vCu0mm87iakDcUAUm05fPMsJ8pz94Doao6vpc0jRiH51dwzZP3SD1raLDkUooAIVMagd8YPNVZtNV5GkjkaJz129DVteoNP424oAiihKR7XbefcVIsKR5ZEVT6gU/qKTovFAEbRiQoXG7acjPrUvFN7Zpy9yee1AAPSkmhjnULIu5RzTuc9KBigGIPl+UDCjgL2p2fTrSZOc0Z5zQSKfehVPApy/NxS0DEz19agaxgmmEzpl16VPg04Y44oGLt7HpQvAHYdqTPvmlGTzQIVUG8vjDHgmnnPqfzpi0ZNMQ5l9efel64zTcH0oAPSmwHn60ijnJGTTutAqQHfw+v1o6LjtSdcilX1NACZp69KbTv50AHGTQtJt98U5QMCgBaz/EWDpQ56SL/OtDPXjmqHiD/kDyEnAVlJ/OgCv5g9aKr+etFSWeT9jgc0qhc/pmhh8pyc0nTmsDqHdwMcU4dRxTI1CKfende+KQ7DsZHNKOQaRSKVm5oEIGPIpzHp39aThuehoXJ70XtuBJ7/pSd/ajaT/jT1T0H6UwE2/NjP507jn9aQZOCevSnUgBgCuP6Vn62CNIuwDjKH+VXgx9DVLxBgaLcsRn5TQ9BrcpeC1/4pbTscfu89a21AwayfBwC+FdNC8DyhxWxj0NUge4LTulItLQQKV6gc1Qk0G2eQs0k3zHOA5ArQX170rfNgUxGQPDNh13T495m/xqVfDFh0YzN35lY/1rQXr0p36UAUP+Ef05cZtwfUZNTjQ9PXB+zKT2q0uPx65p3tRqMpf2LYcsLZRk5NM/sGy3AgSLx0DnFXqVRQIpjRrYHBMjD0Lk09dHs+B5WffNWv0HrTl/lQBSOhWTNkxlT7Mad/Ytmv8AAxPpuNXP4vQUvSqAqDR7LkGAH05pX0Wxk4aHp3B5q0rfN+FLn19aQFRdHs42A8vI+tO/s20WTi3T8qssOn5im8CgCs2m2jHm2jz06Uq6baxtuWBF+gqxt29Kco7nimAgjiXAWJP++afwB90Cj/PWikwHHoSB/SnK2FP8hTOfXikOdw9aYEmScnOB60biRQmV+lG3pxSAFyvSl+8ef1pV74pcfjTELj8BmnY5AzSL+VPXjGOtMLA2O1OX/wDVSMN1Ox70WEHen4pq07nBqgFFKQDzimKSTg0/d69aBD1o+hpuBnjp70/+H1oGJu+ancbiO1R/dYelOZjuB7UEinnGP50dKUdc0p5waBDVyOlOX5u9G0etL2x3oGIO/pUnNMXORT+aABeuKMdfSlbkA0nNAhe1J908ihjijluaAF3Z604Hr+lRj0p3pigB3enHoOe9IPeloAN23Hf6U7uKRRuwc0A5NADiOxoXI7YHtSe1PHT0oAOnFOzmmil3YFADqO3rSUfWgB49D0601jwaTPvSt8/4U0AxfSpgBtHrUa9aUk0xDv5U9eevJpmeDgUq/rS3ESCmjnPNGQvNC/MtFhCr3pyrnHek284p1MBUHtVZrGN743Un7xgMIpHC1a7ZpCw9aAHcmlzt96ZuA70gkosA7ving9O1N3U3fhsUDJDng4oHSjd0xS/eBGccdaBDfM5xUi1lzNNYzAynfAT98dvrV+OTd34oAmx680vH4Um7ij/JoAcKcPf0phbApV96AH9qBzmkHORS4x1oF1HN9KVc0jNxQowOuaA6h1+tLzQemc0ue9AxtHGadx2oVfUYoFYcvej2peSBSDrQMdSUopcY9hQSHpS59OKRaX+dA0C9aXNNpVyPpTELn2wafTOlOBOcUgH9qKbk/WnL+dAC9qRSc57UDOeaWgBMdxRGu0Hcc+lL/KhaAHD6UvH40jfe6c0uP8aACqPiAf8AEiuc56Z/WrvWqmuKX0S7H+xQNbmFuHv+dFQ+cnqaKk0POs9fU0Z3N700g5POR2pY/lYk9T19awOgfxt+tJTto6Z49KFHOO1IBp3A98etKOe9KeMdqVcIrMxwFGenWgBl3dQ2cBklbaFGTk1434//AGnvC/guZrZ7r7VdKcGC1G9h+Arzv9pj45XNndP4a0Wbyrlh/pE6nmJT2+tfMSiO1ZmC7nbJeRjlmJ6k575qoxvqzSKbPpK+/bekjmQ2fhm7uoycEySLEfwzXd+A/wBsnwl4ivodP1U3Hh6+kO1V1BQIyfQSD5f1r43FzGzBgcAHO0DAxioriGG+t2jlVZVYY2t0/wD11pyobifqZb3EV5bpPC4lRhuBU5z7ipN27nPNfGH7J/xsvPDuuWvgfWrlrjTLpT/Z0sjZMLAZMWT/AA46elfZzLjBBGD0rNqxlsxWbjpyKz/ErD+wLxvRDV/61meKCV8O3jeiHtUjW4eEx5fhfTVIIKxAGtXbkcHis3w7Ht8PacM5AhGM/StLn15q0JvUVffpS7h3600fKRUnUdKZIm7HHWn56c0wDOe+aZeTLZ2rSucAf0oAl428ULzWXb3N/dMssduohPPzNg49a1B0Bx+HpTC47ePTindarXF5FZj9423PrT7e4V4zJyIwM7j3pAS7aX68CsTTPES3mqPZvE0YbJhkJ+WQDrirWoagY7iO2hGZ5Og9PenYRoKwPSpFxj0rI0eSUrdJLIZPLkCqxFa6HpmkAq/dJqtNqMEE8cLyBZJDhQT1q1Iwjhkkxwqk+/FckIVv9GW+cZmlnBjbHKqGGKYrnVqvzZx0pVdXzjnFV9Uv003TZrl+iisbw201pql/bXEzSbkWdd3bdnp+lKwzo921cnvUMkypkk44496ordXGoNIloMKuR5jdM+1N0GZL6yklfLSxuytu5wVJFMDTjYtHuxge9P6VDaXqXVq0yn5Vz+lZf9pXc1pJeRRAwL6n5iPUUxXNpc5JHSlpkMy3NvFKnIYZ4qKa/jt72K2YkNIPlx0qGMt9PrRt5o5NO9qoAVaMAYpwJ6HrmhRnJ7UAKuOtKvvQe4FKv+eKQAvGQelP2mk7indDVEienpT+PrSU7ccVQAoz708cA+tMTg0TSCGNpG4VRkk0AORTnNOK4yT261FZ3Ud1CJI2DqfQ5qLXv+QHeHlSEzleo96BMtx/PyKepDZFZGmT3NraxxzxNKcfLIozuGOvtUdrfzw29z5/zT+aVVfr0oA2do3dcil4zg9azpIr6ztxMWE7Dl41GCB7U1tW8yNpI1ygwGZugzQBqcH605vu8Gs64upIJIYkVpZZBnC8Y96dHqG60utw2SwqdyemKLCCTUkjnEe7cSdp29q0MBsEdawLaNP7JsQWHnzuJGbuT1NdBIwjjLE4CjNABnb14pVO7/8AXWVd3glkyl0saAcjGTRDePHNbKGEqTdD3/KgZe1K+i02FJJWKq7BAfc9KnHODWb4ptReWttakf6yTC/UAkfrVK81K5j020eEIX3+W6se47UCOhwMfWmsdvfFZa6sUsXZ1MUqqTtcY/KkN1LdTWSRvsV13sRzkelAGoOfxqT+HNV7q4SytpZnztjXcQKW3uDdWJmQcldwU9aBE6+tEkyQqu44J6VmWOrC6mWLBDbd3IqPxJibyIc/vFBlX8DQBq3VylrB5j9OwHeoIZ5GuQkibARlef51TvJzL/ZSnnfJk/gKuwN52oSOOUjG38adgLffvUg9T9MVCtwrSGPOWHJFS9eKQEiqNvGabt96MnpmgNuoATNScfjTQOad95lPXmncCvcXcdvKkROZG/hAyanUEL0rGhYr4quxL1CL5f071u5DYpgRHB4zznFIZB5mzOTXK32uvpOpalGzGSV5AY1PRVxyfpmui0uIJbq7HfLJyznv9KbFcu/WjIo4qtcXDRMoETuDzlRxUoRazx702SdLdNzkKKht5mkzuRk+tPFiJrozytvQAbI+wNMRANUX7VHHhk8wfKWBArSGducVk61IjSWePmYS545I4rX+ZoZNrbW28etADd49ahubyOGeOEtiRhuA9q5/QJr+dGm837R87I8b8EEHHFTa1Ky6lpc5V4jvMbKR2/8A14pgampXhto4o4x+9mO1c9veoIkkt9RCNKZBJGGwT0Peqvii4Ni2nXZUyKr7MA8/N0p1lJN9qNzdRmLcNqZPAHv70+gGzdTC1sZph1RSaw90tvYw37SO7FhvXtg/5Fbskf2yzlizy6nHpXMXtwYtFFk/+v3rFtPU89aQHUQt5ijntmplNQQqI7eMEgbQAcmmtqEUcgj35c9AKkCeaFbiNonGVYYrOsZGtZntZPvJ0J7itNSciqes2xaFbpP9bFyfdaYFyNtwOKk61VsplnhV16NzVrvQA7FLjHShadt70AJinbaO/NOoAQD5s07ik+nWjrnFIAYU7oKbxnGaeBxzTAT+VJ7ClFJ0oAf17UoHrSbuKVePqKAD9KVeaRvrSqehoAduPFI2KG5PX3pueaAFHJ/nTqRafQIRV7mnfxAU0Dg44p340CHFfWlPam0nWgBcmnL155poGcUoNADvwo7+gpFBpc0ALuobOPak+7S57YpgJn5SKr6tzpNznn5KsYqDUh/xK7of7Bp9Brc4jc3oKKr+Y392ioNDkgu5c9s596kC+tIuRng9OQaVfmGcYPtXMdVg/h96FzyMYpfvUDO3/OaBC43LVDxFdGx8P3k4zlI2P5Cr/PGPWqHiexbUvDeoWyDLSQuoH1BFID8xfEGqXHiLWr3V5DIJb6RpeT91T0HX0qg0jMRkEnpx6fT8avNaS2qvZzD99asYZFIwQykqR+GP5Um0rlwPx/8ArV0GqehmOrbiMYJ5zgipYRKV5ZsDnpk/h+tW/JEmWYe/Jp7PtwVPSqQroj0u5ns/EWhXcRZJYb+GRWHUAsAR+tfqN4dvP7Q8O2FyeWeFW/Svzd8HaPLr/ibS7OKJmY3Cs5A4wDn+YFfpHoFr9g0Wzg6FI1Xbj2qJmci9/OsXxhLs8M3vGMxkfWtpl/A1h+NmC+Fr1W7qcf4Vn0JW5paKu3Q7AD/niv4cCryr7c1V0fK6PYj/AKYr29qtfSnEJbi4HenqN2VHVhgH0qM88U5W7GqJMbQ7LVbO+n+2OJImJx0xjtirfiSFpdDnK8svzdO1afbntSAqFKMMq2QQfSpuBRt9QhGnQSFwqFAevtT9N1S11B5EilWR0OGA7VlSaRJp7YhjjvbTdvWJzgxn29RRpenn+221B4EtMx+WUXq3uae4FW6mefxwbbyTOscG4c8Kc9a0/E1xLp/he/mU5lSIsNvriqurLcWGujU7WH7SkkXlSKhAIIOQatMr6xbywXiLDbypjG75qBmNb3C/2X4fuYEbbblVdiuOo5/nVi3uivjbUhL0itVZPxJz/Kt9ra3fTvsa8RbQox2x0qnNoNrcaqLxpG3NB5Eig4yKdxWJdHCyWxkXAMzF9uPetRenP0rAuNFFm0cun3UiSIw3RSNuRh361urMNwBYA9+aAJjH50MsefvoR+led+H9SaDT4LG4ikIsZnErBSflDHafywa9DWQbuo/OkURI0hVF/efe46/Wi9hWOX8eM2oeB7qazbzGG11K98EcVGsNyuvaZeXA8mKeARkKfQcA10cNnaWsMkKJiGQ5MZ5GaluI4bqNVdQ20gr6gigCaGNIPkRQo74rM0uzksNZvo9hNvKwlVu3PUVoeZjBPApROC2C1AzH0uGS31DUdOZWCNmSN8cYbt+dGj3SW+ltaXB2Sw5RlY8keta4uFDbiRuxjPeobm3trqYPLEjuO7Dk0xEHh+FodNCtwu87c/3c1JqVxHa3lqTAzySfIrquQtWhINo7DtQ06tjJ49aQybocnmnDmmDLfTtT14/pQAv8INKv5UiA5Jp/f+lAABTupxSUc0AP9adj8qbR+NADiuOlHGKD96gg/WrJFHtSX1quoWE9sW2iRSuaMkf409eOCKBGX4R8O/8ACL6YbXzvOyxYZ/h9q1LqL7VbywOcLIu2lkY7Mj8KYGk4Ownj1oET2cbwWcUbEMyrgmsrVLGaO8F2ieYisrsoPPAxWis0oXhePc0n749tvPrSHcg/thOirIW/u7Tmmx6aZNNuYSoR5suFHY9qs+XPuDAKTSstwCM7SfrTEU5IbiO4trgR7z5e11B5BqdbJrp7h5VCeZEYhjr9TUq/av7qj33U7dPtJKjPTrTuOxj2ujXkVraSLMvnQJs8uToeev8AKtqMGe1Czpgtwydqi23W3O1T+NMb7X08tc+zUhFyOGGPgRqB9KitdPit5mmzvkOcN/dz6VAv2xc7oc/RqkVrvb/qwP8AgVTqhkHiK3muI7F7cFpIpw34YNU7rQ5pobuMsGcss8e3gBs8itTy7tsnMaY9OactvccnzV/KmhWJlRHh2SAfMuDkVi29nLBbwSKhaS1ZkKj+JfatP7JcHjzV/Kl+yzMTicj8KsDLkAvhMkk8mJF2rFjGPrU1jdyaXbrBcI+5RgMq5B9KvrZnk+cSfpStYs2AZmIzntUiMaSI2s0d8sbBSzDYo5wfap54Zr/UrS4VTHEkbK5Yc8mtFtPZv+XiT6cU9tPbapFxIaoDHms5TJbxxqztbTEBvYjg1a03UYrNDBL+6lz83mcAk+lX105s83MmfU45pJtFhuVHnSNJx3oAfI375WVRhuGarCsCODmqraTH0WaUADj5qltbc28IQuZGznLUrATNjbTl+XrSBc8Uu3t2pgLn5qG9aRfvChwWHB5pWAoapp73UkV5b4FzDxj+8PSrFjdGZeVaNu6MORVhMqODTzk5PU+tMDOuNBguNUa7c7vMTYUwKjtbO6s99vGu5Bny5M5x6A1qjnBPGKU/XBouKxzWo65c20NmqriV7gRTIRyPcVvzRySRoFbZjrxmiSxt55kmljDyLyGNTMfwoGRwwmPPzl/dqbqhm/s2YW/+txU30p6tnvQSYtvoq3Nwkq+ZCsY4LEksfoa3rXcgAY5o+93p/pg0rgZek6XJYXt+WAEMkm+Pn1HNXNQsY9RhRJDyjhlI7EVNn1oGevemIz/EelvqulLFFjzo5FkXPsanJTyTDJtL7fmyfarn44qvNYw3EgeRN5H60AQ6LIzWrM/IViAfUA1QbS/7e1A3cimCOI4jbHLEd63EUIgVQAq8AelO3Y4/KmBSmsZprKeGRw+V+UrwazfC+ly2sL3N2CbqRjkt2A6Vvg+9NbrQIFY7uTxUowwKkZBGDUW3FOX170DM7SAU86HGBE5UfStQdKr2tqIfMY9XbJqzt7dPakA5TTt3pzTAPXmng/hQA79KX1pqmjOG9aAFz370Z6DtQeaOn1oAcMfhTs59zUY7c5pw496AF3fpRkH3oyfrSKv6UALn0pfalzmhaACnKCMUdKFoAXJzSfeY0vXmlFAgXqfSnH6U0HmnfyoGA4peaOPWjleM5oJBm20qt6Ude9Cj2oAXP4UL8xxj8aTn1pyjsTQA4/d4pBxjindsUn60AO+gpBS598UnWmAdKjvAWsLgDk7DUv8AOmXGDZ3AJxlD/KgaPN96/wB0/lRTtq/3/wBKKguxy/r60vKjrSeXu+vrS428GuY6wUjpml9+tNC9wPxp3tTFcQfd68VJG3VT0Iwc01cYPFJt3np0oA+Nf2nvgbdeG/Edx4p0eEvpV8++5jUZEUp6njoG4/GvAgo/5afux02txX6jXNvBqFpNaXcK3FvKu14pBlWHoRXi3i/9lHw7r00lzpkv2Bm6wONyfh3rRPuF2fEDFNxBywHHGODn09KsWOlT38ixwI8jZxhRzX1Lb/sayxyHzL21K+uCxI+lejeCf2ddC8JMk0+LyZORuAwPp+NXzRK5jhv2cvgs+myDWtTgAfgxK38Ir6VXgcdBUECrBGI4kCRrwFHSp1+6Ky1b1IHcfjWH46+XwvdkDDbeK21+asPx8xj8K3JxjoPzpDW5tabHjTbQE/8ALJf5VP8Ad+lR2a+XY2w7LGo/SpNp2/WrRL3EPrjNKBu+lG3bmgNTJHiq1xaSXEy4mMceOgHWrGT/AJNP+tAFWPS4h/rHkY/XAp66fbq33CR9c1OuWz/WkWRJHZVYEr1FTcBi2VurcRgE0NZ2/wAv7heP4al/ipcdBnNMZAtlbgt+6ApVsYATiMAVOV+ooU4JAAoAjazt2X/V89KY2m27sCU/WrPGeOKPTigRA+n20KNKcqAOTuPAoW1gljSRWYqeQdx5qeaL7RZzxAZLIwH5Vk+E5zceHbUMMSRjy3X3Ukf0pgXW0yJmPzSAf7xpV0tFYlZpF9RnNWf0pw+XNAFP+zVKEGZ/bmmtpsbYy0h/4EavOVjjLsQqiqWn6lBqFxcQxsd8XUMMcdiKoTBdJtvST8XNPbS4MjBcf8CNWwvNKV4BqRlZdNgEYDA8dMk5pv8AZdvjo3/fR4q0zcjHWkPrQA5MJGFA4FOI3EUwN0NS9aAE55p6n0opNvfNPcB9JkbiKAc/jSY796QDxnHtT16f0pFHy0E4571SEPP3QRSn5RxSKOKUDmgLBt4Hr1p/1oXFL60CHKvanD0NNX0pdtMQcjntTlpVpfuk8cUALQe3ao7q4jtLcySMqIBnJrPtdYW81NrXY6MIxIrNwCDSA02bPGaSmM20qD3NPpjHUv3eeopm4L3o8wdDwaAJNx9c0ueAKaPmUAHGaSPO0VAEgPSsy51JoPEEViU+SSLer5644I/lVm5vobVgJJFU4z8xxWfdXVndXVtcl8vDnYV9+1UhM2WzuOOlJnnOaof2tHJKqqWJY4Hymr69c4piFHB9ac3Y0KOfSs6TVvL1r7FIjIWXcjHow9qBGipo3beDUdxL9nt5JeoRS2O/FVNF1JdY0uG8RSqSDcAaaA0lJalBzxTN2cU7070wHimj9KQMe9KBk0gHD60pz0oWlYdaEA3FLzxnpShaKYB0wBThhQfpSCjO6kA9fSk4P4URjIobFAB39hS8GkX6UoG1QTTAOBninLxmmNIq5PSoxdBmwm5jSAtrTxgZ5qsvmN2x9akOfXJosA9jQMcYqrdSSwwllTzfVR1pLW78xQSrL9aZBeo6UxZUbgHNDOO/A7ZoGPPFIvzc96gkvI04LqD6Ui3W5gACB9KBFhacvNRCYY5P4VIsg7c0ALn86cvam55pQ350AP46U5elNwMUbvlxQA4/1pep9ajP1pwYdKAHZpfrTJGCKGJwKbHIr8570AWMDg5zSdW54pN3p1oz6daAHn9KQMd1IOtKpGaAHADjPNL9KbShuPSgAJHpTl4+lNpQ3agBy9en40vt1poJoXrmgB2PypT92ge1NoAWpKjwMkU/I9aBWFpRTd1IsnegCWk56d6bu6cc0bsGmIlVeOlKv3qj3YIpVbrSAkbLfSj9Kaue/Wjd60wHMelC9abupB6jvTuBL3pJcNbyjHG001cnqaeVLI2Djj8qka3PNfLX1oq35R9vyoosaHGD5c0vtSL8xOeKXAzx0rmOgRWOM0qsW7c96Av4UY9Bg0gFz6Uq+tH8PpSd+lAx209TyaVcr0pc0q4zVACyEdetMYeo+uae2OKTg80CEX7x9Kfs2nANN3AOP0p0bbm6YNADxwSM4rnfH+f+EXnXPVh/MV0jJ0zXN/EH/kXGHfzFH1pDS1Ojt/ltYADz5a8/hTi3T1psK4t4gRj5F/lSlQy46Va2JHbulRs3zcGlUH8aXyxuGRjNUIUfNinDml280evpSEVNY1AaXo9zdHpGpNZUFkNOutMu1dhPcHEvOQ2f8Kd4ok+3aXeabGkhuZEOwhDjPbmp76xu9Q0WxlSLbewFXMTNjOOCM0Abe4biOh9Kbxu61mabfX0l15V1YtAjDIkDAj6cVctboXSuQMbG2mlawFiaYW9u8z52RjJwM1ir4w0+XJTzSAccRN/hW4r4yOo71nT6PcSTsyX3lR5yqqgyKYFqyvEvo98RJXPO4EEfnVhpAqsfQdB3qC3tzaqVaQzN/fIANTjtQBkR+JWb5VsLrd/1zpq31/5f+jaW0eTnDuqgn8K6GNt7EMc5GK4TwnDrVvZ3Hl3SX8EdzJGsc5KyIAeAG7jHrTA3YrjVZJCjRQxsOQpfPH5VrqzbELDDkcjPQ1zjXMsPjHTzPG0Cz27x7SRgsMGukkQ+XJsG9wCQvqfSkwMzxLNtt7NCcRyzrHIenBNRrttvFkgACrJajbj2NR3sN9q+nva3OnbI39JBuQjuPenDQr2ezsZpJgmoWylN7DIZff8AKq6E6mzJcJGgLHC+9EdxHNDmNgxzyQax9at5I9Nha6U3DJIP3cHG/Pbms/QdQFvql/iyntLdto8vy/lDDOcY/CpHqdSW/Gl+poX5trL0I4pRQMUdQKkb8aaq7ue9OBxQAfw9MUisd2Kk/Wmpzk9KroAvSnqSPpSd6X3/AFoAkXnFB55poPzfjT/cUgALS7h3pG49qPc80APVu1O3HPSm9uKB0pkjxnin5Pam9B6UdG9KYEint3p59KiDbWp3LKRnae1BBz/iidV1vRbWZsWk7MT6FlGQKPM8vxtPvO1VtE2ehyT/AIVoaj4bh1iBIr6ZptriRCoClT6gjkU680G2u5IHbzA8KbFcOdxHue9MCxJKrKXB+RRuJplneR31qtxCweNuAwOQaWOzgsIPLG4RyfKSxJ61meDdLudH0VrO5GPKmcRnPVNxK/pikNFu8srua4Dw3axQj+HZk1A0bwr89/kg+grUmtxcQPGxIDd1ODUCaPYx/dt1Zv7zDJP40DLUOViTndx1qT8OKaihFCgYUcD2p54Hv60rAhBGrsCyq3YFhmq0F9BdXFxEoUG3ba4x0NW07GuK8Tabqlx4hvoNNl8lLiBZmI+8SOCB7n1oFc6Gz1I6hqMqQKPs0Qw0n+16CtRR/kVz+l6lb2OhL9nhKi3UB4VHzL6kirc3iK3jvNOtwdz3ufLKn0GadmFzXqhremHU7NXjwl1Ad8Td8+n41eYbfr1pyvt7UCOcutYH/CM3883yPHEwdT2OKZ4duk0fwrpSXDLE5gUkNx25q/rPhiDWWIEjQpIwMqL0cD+tZmufaPt0kEFtG5jjEUe8HcQR1FUB0lrKt1CsqMGVuQV71Oue9ZXh2xn0vSbe1nAVolC8NnPvWovIHpSuA4KeO1O/l60N70o6UgFFGfakGe9O6jNNAMy2Qe1O57Gk9qXpQAv6UnWjqfel29s0AKuR3obihR+dKMUgHp0x2rnY9YutR1WS3tlAhTrIwxit/cVqvcFLW3eSNVDZGeMd+tNAMjsFZg0rmZx2PA/KriqFXAGBTIclRmpQC1MBWzt460q5pvPang8epoAUcDNRXUBkjcxfLLjg1OMYwRzSt0oEZmn2t4E3XDIDnr3Iqy2n+dIWlkZl7DOKsZO0560vr3FBIi28S/dRR+FOVQueM0oPFHtQAqqvpwKNo3EgYo4PHSk9waAILxZMxlHCpn5s1PHziqmpvzbxdCzZOKtxfdHFAD+efSlxux2pvUmnLxQAFdvHf3pVWlPPBpR2oAoatZSXrQrE/lleTzVpEEaqHbJH8WOtRs5+1dTjHFWDGJVoATluQenQU1pCuRjNNVSvA61KrZ6jn3oAdHJn6VJ9KiMeenB9qBJtbDcc0ATdOe9FNXnvmlOcdaAFyfxoGd2cUmD1py+9BIu72FPWmLinDFBQ8HH403b2pR1z1o68UAGeODzQuc0UvFAtR31o20D8zR92mIUfLR/Kl7UL/wDqpALt9etIKcelAGDQAA9BS/Wj7tJu6c0AOx8oxR24oz6Uoxg0AC/Wn/wn1xUfVv6VJH34oA43yR6UVZ8lf7xooLueak7cEc+tLknnmgkbcDmm9jXKdY/ilU0zn04+tO4BGaBD144pSB3o5C5J/Ok7etBQBRT1XHGaZye2acueeaoBcfLxUaqd3vTyD2NN7igkeoOcYyKdgHp0pFz3NO60AOVuMHrXMfEiQp4fjIOP9IiHH++K6VsN07VyvxGYx6Lag9Tdwr+bikNbnWA/u1HTAo/i9RT2Ucd8Cmrke4FUiWhf1FPKgmmr79aXj6UxCnik/HvSqc9RmjaBTEODE88ZoDbs9jQD170v6GgAjbaRnpVSztWtZrj5wUkfcBjpVr+Hk01mDD0OKAHjrS9fyqNegNLv5OOlAD26E9aEx1oXDL1xScrn0oAlVirAg1BZ2cNi05hXHnOZGB/vHqafuAxzTlNAEc9tDdzQySxh5IW3Rt6Gp+d3vTe+KctIB27POTml+8OtGOlLt/IUwIb6xj1Cxe3lLKDyGXqD2NLa2q2VusSZK92Y5LepNT5HbjNJknOelADT04FLtO0EfrSHg+2adQAcnn+dK1JnbRuH44p2AevT1NKKbnAqRQOB0oAXgtmjHpx60LjJxRnnikA7HrS57UgbsaXgY55pgIx7elLu6dqRhninZwBiqFccD6D8aUccD8aRWHrxTtwz2oEPXA9/woLZxTRTtu0gGgBwHPJpeVxRj5h6U7mgQ/dTd3P8qOOaTI7CgQSKsibXAKk0vPX2pp+bHanbj06CgYgOcmlOR37Ume/ShfzoGKvrUn44pn3e1PyBjmgQi4Cgd6dkeZuKjd0z3xTeC3vRtHJB5zQIXyYt7MYl3MMFtvJ+tYsnhO2fWbG9WQhLRmdIuwJGOPzraB/CjcO1ADm+YkmhQKTvS49qBDslWHajcN27au7HXHNIzDd1+tLj9aAGk9+uaen3R/KmHC/Sl3elAEuM04jAxTAwxSNQAuc9KXd2pq/54peKYDgfzp23GaYv3s0/d2NO4Crx04o49PzoBzR/DS3AUfN1PSim54AxSj8qLAIe+KjmhFxbyR/3hipPr1pyfeGOlMCvZuWhQHggYIq3/DWXDIUvpY8YBbIrQGV69aAH7elOXPWkVuMU5T68UAO704t1HQUz+QpfX0oAcGoA/Cj+H0pu7OKCWPo3CkXuabtO7NAh/TOaUA1HntTLi8FrCXPXHAoArXSrdalsP3Y17etaA+6B7YrLsZAsZlfPmSNk5FX1l3f/AKqAJuPWlz8vFRbvY4+lO3dKAJBz1PtTx6VEM9jzUu3HU8fWgCtNxeKc8GrSk1WvE+eNu4qaPlc+1ADiuee9Mbrno1SJz9PpTJkx83agB0bfNnuO1OaPzM54PrTEx1HSpVoAYpIwD94VID61HJH0YckUqcjPegCQA+tL/OhenTmj9aADntQuelGDS7aAJB2oPFNHT2pw5oAWj3pKD04FADh3pD096F+7QfSgAznvz9KkXjGaYuP/ANdSKR3oEDHd9aUdR3oUUvH0oAQnn3pfr1pvfPGaVcbhQIdjpS9ab9aXPvQAvA6U+M81H60+LG7rQBi/ZfairG33/Sigo8fpc0nPXFL/ABdMVynWC+nakJ44NPpFwGBP1oKsP7cCmDJJ9KdzjFOwO4FACe3JpwIHWm/Xr1FKp+b9aokX3/pS/eoUBuO2adj05pIBVFDHsaM84xS/dPtVAIrBuO9cn8TlJ0XTwBkm+t+n/XRa63G0+9cx8QkElppAJPN5H+jDFJjW51cq7enoOKRQQDinTGmqfyoExB+Zp+3PbmmN8rAe+KlU7uP0qhCqprLvPEFlZ3RgnnWKReMH3rU5zimNFDI+54UZvUihEmb/AMJJp20Fp1X3PSprfXLO5kCRzKd3TB4qPXLk6dHYPDHH+9uFjZSoIKk4q+1tCkmRDGDnsBmmA9o+2cVG0ffqanALGmbl3bQwJHUZoAB9M0pj28tx61DfmeGzlktYluLhRlY843e2azbFdZ1Kzvo9VtILKKSJhH5M5dwcfQYoA2tu5QQcj1pOFcKT8zdBXIeErfVYfD9pd211JfIy4a2uSN4IJB2t36d6uSaslz4o0gskkEjLJG8cikHdjP49KBnSDaOpwPrTJLiKPOXUbeufSq97o/266DPdSomMeWhwD75rEttLhs/GlzbSAyxSWqyRLMSeckMefwoEdFa3kN1IwicPt/u1ZqOC3ihwEjWPt8tSMvQ9RQA7aD+FO+lIuBx/EaXGeaAGsN2DTgDgYpufzp/mDigBD0oPIoI5z3pRn6j1oAdwOKNuOevtR6Uu0UwFX3pRSDt39KUfKuSaQC7huxSt96kxk5ApRQA5cf4mlP5Ui0vT6UALxnjpTto696b6Ypy8DFMQbRx7U771Hqc0f5xTEPHanevNRoxPbBFSfrTAVT0FP3Hg1Gh4pwb24oAjuLyO0UGVgobpniqx1i13Y81SfY1bkjimwJIlfHTcOlR3cJjsblrWKNZljJT5e+KBEH9qRN93LZ/uqTV/cCPfFZnhzUP7V0e3uSArsvzqB0bPIrR/SpGLS9V9qXgKT1wM4xWSuuCTdtt52Gf+eZxTQGt7frS/wjFQ29wJ1BwwH91hiphTEOWl4bPaopLiOHG4gHvzTLO+huLkxxursOuDmgRYboQOo61BcXEdmm+Q7QO2a5uHX5dM1/VbO43TPvU26KMkgjp+eafAs8viby9TAx5QkijB+X6H1IosDOjtJvtEKy7Su7kZHNTA5x6UH5iuOB2pFZWZgpB29cHpQBUltrttZSUSD7Fs5XHerpas3xPqE2l6fBNCgYvOkZz2BOM/rWiMKqEelAIGHSndAMCmuwCjJFPwNtAgCnr0qTaFxTUPHNHOcdqBi8dqO54pOVABpy/dpoQtL1oxx1pdoHSkAc0jHilx3Ao69KoAFOHemjjtS7fagA9qVVIpT60i+/WgDPvovs9/DOPuP8p+tX+vekuLf7VC0Z4zyD7jpUNnMZI9rjDqcEUAWRT+3Wme1KG9qTAeKdTP50uQPpSAc3vSZH1pBz9KcOvA4qgF6Lyaj8wkkr0p0ilo8AU2Nh0oFYZdSfZ0idskM20+3pUJxfSAYyi9KXUG8+3aNeecgCiFtmEUZbv7UCLaqq8ADAHHFScN2qJV2/WpF9KBC7R1zQAPSg57Uo9OlAD1UU4D0pP1p3XikxkF180ftTbaTeq80jK1u208qeQapea0d0yDjA3UxGwtL61BDIHUEVPwBQBEPlbHY1JUUx+bI6ipFwyjHFACyNtXNIpNEg3RsKbH8q5POBQBPSkfnTIyehFO3Z+lADv50c0i8UtAAWxzj6+9G7A+tGaF60xC/qacPWmfTrS87hxT0GSZ4FN3cnmk9OlA+bHrSYDxzyDxUi45NRLxTl5pAOz3NJu+aj0GKON3FAaDqTPbvQCfSnDAoJDt706kDYo3UALk9qdH94E1GM7qkVtrAUAhnlj/ACKKk2n0NFBZ4gB+FL3yfwpFO7ikY49veuU7RcDvQB8wpEP96nbt2D2oAXae2aPX0oLUo4/pTsAZ6ZoyD3pPvfSlXjtimSxyjaPf1p38JxTTmjnBoAdzxS7aT72PWnDjNIQL973zXMePs/8AEjTON19H/PP9K6f7tcv8QAWk8P4A4vk470MqO5102e5pFAzzSS53H1700k1USWKy/jinL39aYv3sEcU4ZU57VQCgnPf60/uB0pBnIIpQT3waRJV1LTI9Ut4Ud2QwyrKrD1FLq80sWk3c0ABmjjLrx1Iq0MEUgztI/hIwQelMRDpd4t/p1rdIQRIgYkeuKytd0WJrgXMFvcyzSn5hDOUA9yM1r28MdrCkUESxRrwFXgVMuegNAGXo+l3liQ7TMqkco7lj+dbUf7zKn+IFajwRwaF+XHegDL8J2NxpWkG0uFKtHPJt91LEj9DS+JtNkvobK5t0D3dpOki+u08N+hNaxbcc0nPQdaAEOcj6VTvtJS61Kyv/ADGSa3DIcfxKe1XFX8+tO7ZoAz9fmS100XMt19mto2zIyjnFZHhHXbLUNX1C3srz7VbBVePc+7BOcj+VbuoWCapYvayMUDc7l6gim2Gk2mmoiwwKHXnzcfMfUk0AXgvJz1Bpy98U1ck04LtoAXjk96bx1pd3bFAX5sdOfSgAPtSq2M0fdb8aXG761YC7vmx2pduKb1UZp2OhHSkAq5/GneuaQcc0Y7djUgOUfKaOnB4NCjtmlwCc5pALxS57UlL/AA0wHL8q0pcZHY0xjlevNB7Z9KoCVT+NKMYzTEboKf1zSFYdxxjmnHkCmKpDZp3YcYoQMB8vAo3Dp6U3HOcUbdwqiSQE7s1NE23Pce9QDjrTvM4OOuKAM3w9o76PJfxFg1vJM0kPPQNyR+dPtNWjutbvNO2MktuqsSRjIPQ1dVgwB6moP7Ph/tD7aExcFNhbPBHagZaDkfX2qC6hluXG2fyY8cqq8k1P94jmk53DFICOGySPnzHf3Y1YXGfemr0PoOlOX73PBpgRyWNtNKZHhWRu5YZqSG1hhl8yOJUcDGVHalH3qdxjmgRk3WhlvFFtqkag/uzG/t71e1TTRqUcbI/lXMPKSdvpVn8xTSfyoJM2ZdQjsUmAXzImy8anO9e+Pesr4efa5LDU7u8DLJPfSMiv1Cg4A/IV1Cs3BpchflACj0FAEGrWY1TTJrbOHIyh9GHIqnp99cSLFDJA6yDh2YYAx3rWXpnHFLu2nnke9AzzufVtQvry6WOOYu0+23MZyoUHnI/Ou9tZjJAhw2cYO4Y5ptvZwW0jSQwIjMckqKnyeeMUCFXJp6+9NX5e1Ln0oAeeaKaMml9+1AC7sc5o38U1lyOlKPu4pgKW9KVenvmk/hHFKwLCmAuc9KVWP4U1FI4p/pQA7rzimqfzpD16Clxwe9ADlPP0qrcJ9nuVmH+rbhvY+tWlII6U1lEylGHBoAcMOvBpVyKrQs0bGN+o6e4qz9BQA3JPtT196XgdKP4aAF5pVJobpSjG2gBOe/WopNvJPGPSpWIC1BIeg6nsKCdxscZZix59B6VMGCZwME+1PRNi8H607hsGgBitUikbfSo9o3dOKkVfwFABupc0EDrR+tAChj1pytSfzpw+nFAgch12n8KoG3+zzGQsX3cH6Vode3FJIomUqQD/ADo2AitRhBnvVjd2qCFgMg9uKn9+1AEU3ylSe/FEZ+XpTrrmEHHQ5p0a8cUAJKxEbN6DNJD80ee/WoL64J226feY8mrkfCgDg4oAVfu0fXilGBRn86AFXA/lS8n/AAptOztoAAKTBPJpc+opaBMReKcB81M6mnZK5FMQ6gfWhe2elHJo3KDnoead/Fik+vFKv0oEP4zgUm3vnNKvbmj/ACKQWHdqT3peWApO1AgJz3pV5oHvyKcGxQAn0pyg5HI/GmhuuKdGcsPTNAC5+tFP20UFHhyMM8jnpTsBs03ac56fWnKuOgxXKdodvSl4wPX1oH0zR6UDAfrS7enb1pB1zgZp3vTYhNvX0pwxuz1pu3aop4x0pgw6EY6UD8zSKuFpQ23t1oJHc80D1P5UhzQGpAO5bFcv42c/2t4aQjIa8BP/AHya6nOTzXNeM8PrPhpe/wBs4/75NDKjudTMf3hwMe1Io+X1NLL97OaavT39arYQ73Pb3p33gcnIpnoKfz0x+dMQgU5xSchunFPVencijHbrU3JsC/d9KUc5pBlvrS9G9RTAMelAYBhxS8UfxH9KooNx6ZpeD9aTYCMUcjGKCB/93FOGKRe1G7GaQC7ewpce9If/ANdKOKYwwW+lHDCjhuadt6cZHpQIRTjHFOPy9s0mPm5o6c5yKAFAzzRnuOlJk9ffvTVX5j1oAeTuY8Uv3RzTdp3Y7VJtGBn6U0AvHFC/Wg8UMMY9aACNiGYNwAadzzjk0gbjpSr16c0AOUj8fSjGTnNH86F70ALj5jRk9qOR29qWmA70pSvamY4FPz60MB23aeKfTFPA/WgMecVID1OMYpzN0z3qPn6Uu446cVQmKOvtTxTB8p6Y/GnZNMQo70Ng5FAPJFB4oASMHdUmD1pg7enWn5NACA/LTtvy+9M96cDSAdjpjpTuOuKYo+an0wF9ulG45pMknPWl7k0AO69etNbuKVW+U0UEiKcY9aVhu4o3enpSrnrQFh6thQM5NHU+1NH3s07saAEPfFKrcYpDSj260CHr05pP4j2pFbbjNKzDoKBod6Uv3R1pB/nNNwS2e1Ah/wCNHemsecU5eRVAFPbtTO9LuyOaQC54ozR+PNA4HpTAU8YxSq24etB79qF+WgBelOBGKYOWPal6YwaAEmj85ARw69DTIZi2QRgg4IqfcMdeKjmh8z5gdrA9RQA/d0FL/wDrqssu3huD71PG4ZqCepJnctHYf1pMYGcgVB9o8xtkPPq3agZJJIFIHVj0FLFGd25sF6SGNY+c7m/vGn7h2PNAiSkpDSelAh2dtOVhTGpwPHSgY/1JpF+7Tc8Uu4/WgQ/rzTv4aZ25NBPQdqAH7hxSq1MzTlz9RQAyZNrF8detOQ/KPSmS3kMOVd1zjnJqo2rW8LACZCD0+agC9N/qyDUbSbVC55bpWfqHiK0s7N5GnTH+yaNP1a3ng83z0ZiOBnp7VYF2GHdcFzyFGBV0nA461TtbqNlxvU9+DU/mhuB+lSBKP1pOMjvQp+X3oHb1pAScCikXPWjr24oAdjrRSbs0Kd1ADj1o96aaOQR6UwJKPpScml/CmhMX73FP+7gio1PSnfrSAX3/AJU5cls1H+HapFoDUduoHrSbqXpSGLSbctSCnbsUAJxTlxkfWmjnrxQCdwNAkWdq+lFJvPp+lFBdjw9SG7YNO4K88/Sk3c9OfUUu3qRzXPudQhJ//XSfhS8L3/Clx6ikMF5HFI2eop3C4J6GkZtuPTrS3AaSecDIpwyWoVtw4pdoWqAXPv8AhSj6YpMA4NPI9aCQx8vvRxtozxim+1ADtvI71zPjL/kYPCq5/wCXsn/xxq6ZGzXM+LT/AMVh4RXGF+0Sf+izSZcTq5GyxxzTVk29uKdIuGOO1NXBx29aroQOb7wx0qTsO9RkFTxz6Yp4II9KAFVsrwKM9e9NGVanMNrDHSkAgyuBTmGe+KYM596f7UAN3beD0oHOBnpSk/Ke9JjJ44qiR+7nFKvXBoVeQTSthTjFAC0vb3prNt4A59qcO3rRYQ3ngjmnr3NHHTFLt44pjBD2p/fFMXsRRNMkC7ncIB6nFIB3XimjK5ohmjnRJYmEsbdGWnbT09apCDNNyfTAqhe65bWczxtvYRgF2VSQg9Se1X+NqsOQwyDSAkLHvS5NMUjilyPwoAeOfelY9M03+ICnMfWgBVy1Lk+nNIGHpTs/NxyaYDV60v8AF1+lOHcCkPvRcA5wOmacCenak9PenZzj1pgGfyp24fnTeDzUm30FACU9V28dBTQvOe9PoAM4pO9DNSsM+3pzTEJkluOtOGTnNNX7wzTh92gQuPlobNG4qo9fahST9KBgvr0p3fFJ2p/vmgQn1oPQmgfN1pfY0AKvUU/8KZ/IU5WznFADv8mk46dqQ5oGCcUCHLmnHP0pM/jSnvmgY1Rg9eKft/Om96kAPc5oEM2n8afz074pDnik7579qBDvXNAyuaF6ClJ+X1oEMByvoaco3L1ojXPNKrAZx1oAcMYFKv8AM0mfXpTsjrQAFe+cUnTinZB6/WjrziqAaFp+D24pBTv4aQAM7eaTr7CkGaf7dqADPGaXjr2pMUcgYxTAXsO2KX0pM8Gl69KAGT7hGTGNz9hmqC2+oTLuyqe27NafKr1pw6UAZp069ZcNcRD2Kk/1pF0++hhcx3CO2DtUp3/OtTbzTvu80COb0vT9XuZpFu59kXGTs6nvjmtyHT2hUqJuO3ygVOslP3UDKzWjYH75s+wFJDCY2JLF8nirLUnXigTGhd1PjUc5oVaePl5zzQA1lpQODSM3c8Uu3j9aCQXFOwKRaU9BQAN+dJx2FLxilHSgBdo79aUdD6UzPbpSqaAGLawbiTDGzepUE05reDp5EeP92nrQOtAFC60SC8IDqqjoMCrlvp9tawiNIVwo43DNS+tLmmBGYEVshFH4U9UVegxRzTh29KQCikPOPWlpeOKABaO9KO9GPzoABT9tMxzTskYoAXgGkX72SKVsc0o+lACnPaj1oWhaADpg0bsnPc0vOcUuB1oAUAUuRSL0o/ioAd70opOlDE468UAFFJzTu1AB2z3NLGvqe9Ax+NPWgCbJopvNFAzxBTTh64o27s0ce9c51DGJLYA4py88HrS8gnuKPu9Rx7UhiexNL25FIwI/+vSMtADsBcY6U7jr+gpoXcuOtOC9qYgVvbmn+/Wmqucmlz680AA70qr1pCvGR0pUb5fTmgBdn/165bxZk+MvCS/9Npcj22GupDdM1zHiYBvHnhNARn983PsmP6iky4nWtncc9Kj288cfWnsQzE/lQp3cE4NMgbuKkdzUv3sZ60xsZGCeKcuD1psRS1jUJNLawdV3xzTiJz/dz3/PFaDDaxAGQKzPEkEk+jsY13yQyLKF65wc1PZ61bXrKI2LNjBXB4qhFntnsO/anbNpyDnNc7pPnStrujTysZFLNDIxOdjjjB9j/IVn+Bl1RvDVlNFfNcyoDFPb3RyQ6na2G69u9A7nYja0xjDDzAMlQefyrKh16O/u5YLKJpzE2ySQcKp9Mmqs908HiTSbqaFrczbrWUE5U5GRz+FQeHbWWzvtTs5JREsVy0qqv3mVzkH6dfyoAv8AiS9kt4bKzjl8i5v5/IjkHJXgkn8gaTw/qEsNlfW1/N51zpjMJJOhZcZVvyrO8cafeahfeGJrE4FtflnkxkICjAE+2T+tOutOax1xVlnM39r2slo8mAv7wKSv6ZoESSXkt7olnq3mNG1xJG8EanACE9D611X8I9SOa868M6kD4X8Mw35MUFoPs87sDgSx/IAfTp3r0OORZ0VkcEHuDQBIq7vwrI0fWZdYuLhoogLKJjGJGPLsODgVsRsEc7iMehrn/DMkWlx3+nSuEltZnfk8lGO4H36/pQI34v3jAY4FYGkTDVta1e5m+aCxm+zxqTxkKCWP51PaeLIJFa4itbh7WM/NMI+OO+Op/CuStry/03XvEWm2dtJc2+oTpfQXSAbPLdAGAJ7gg/nQB2vh9Rb6OXbmMNI6n2ycVkeF768W+gku5jNb6qjTQoekRH8IPuOaXUvFFnZ+H9RtsNa3UNo/lxSgAnC9j0P4VkaDqqt4Q8KajcSxobfyQVB5CsNpz9M00Br+GZorrwrqNxMQxmmuBIzezsuP0q9o2o7ZLbTJQyyraJKsjdGB4I/DFcr4JvLGOw1TTby7CfZNTuDs3Ab1Zyw+o5pfFWt2U3jTw35V3JHbGGeOVrf/AIDgHj60AdpHqcMmsS6aMrOkSzc9CpJH8xU1xfxWs0MUp2+bwDjjPpmuK1TWYNP8SaXqVrHd3cflPbzqIWYhDgqenOCP1rppNSk1jQbiewhZrheUiuEK5I9QaQG2flFKzAjiq9rcPNawtIvlSMuWX0PpUwbj2oGOX86FPze/ehV9qXbQIdk80iil9qOmaYBnjpTh24NNXn2HanZpoBQpweKeD0pm49QKdnC9qYC5wfWl/SkVvypeOfSgB38OR1o3dKjJPIz0p275aBCs3HTij6c00Nuzk8dqep4z3oEO9c079KZ/CD0oFIoU+nWn/Sm96cxoARev0p+4MfSmrS7sUXJHcH2pVPGaYrHninCmA7600Dac96VeeKWgBy8fSnj2pmMYFOzhs9qADjd+lPHPSmNzSknbx0oAVuW5pfwoNDd6AAUn060c07pg4oJE5UZojUenPenDkeho27fegQH5eBQrH0ppznPWlH60APz+VIzfMDjijNH3hzzTAdx3pRyKbTudtMBVUZpRTVJGe5pW4I70rAKue5pT+tIOtKPegBaVW/8A1Unp3o+nSmA89MnpSqeabnI60oGBSAkz+frTR3pOi8c803nqKYD9o5Pek59eaVTxQQce9AheuO9KMdaZtNAz60CuSE4pfT3pgUk5p305oEK3QUtMbPanKNv40AKKXb7fSj7vHWlNAxO9HQDihvu5zSA/jQIM80u0ECjyyO+eaXaaAHL7U7dntUft0py+9AC7scYpQRTWHeloAdjGOKB+lB9e9FACj16Uq0Ko/GgelAEimhsU3+H9aTd0FADxS/zpqtnPHfrT+KAEpd3tRj0pNtADl55pe9C4oOOaAFBx2pN2e1IvX27U7HSmA4fdoH3hRwKAe1IBaTNLnbgd6T9aAHbvlHFAo45xR/KgBwo3etNH6Uu7kc0CJ/OoqPcvpRQM8YAGSelG0UgXbgDn1penBNcyO4b06dKXb/8AWxSdT3p3+eKGSDd/fik2+9L15o53dKEAKNtLnr+VG4HI/lRx2oQxykdqToT6U3I7GlGOMfSmSOA+U9sUZ/H1oU9sU6mAAdMiuW8RfvPiN4XjII2w3D+3AUZ/WuqA29BmuU17LfFDwzg/8ud0f/QKllxOtdssaBgYJpG5bijGRw1Mkd1Oe/Snfd61E7NgEDBqZecZPFUSJI7iMmMZY9jVFbS6YAtciFj2jT5fx9a0e2RmkIBzTDYzfK1aKTzEW0uHxgycoT7GoobHU4Q4gis7Muxd9rFgWPU1rL8vuKdk/X8aAMmbT9VuAoku7XapDAeSSQR361U1HwrPqk8c016guEGBJGhXI9OD0roPvLmhFOeBkUEmP/Y2rKgSPVY4wP7sA/xqK68IzagsJutUmZ4ZBIuxQu1h3FdA3A9qarblpFGL/wAIxhWRr+YwyEl0KJhiepPHWm2fge1sW/cX97GM5KrLhfwGOPwrbkXipI+meopjM8+GbaT79zdP6/vSKZL4M0q4+bbIso/5aeYSa1Q2KXd3FAtDCXwcPKaI3REHomQ2Pzq/a+G9Os7eOGOI7EGAN5q8uQOKUMeg6etAWKtx4f0y7jZJ7GF175AyaZJ4b0mW1NuLGGOPGF2oBt+laCtt46nuaXOenINBJVt9JsoeFtIVb+JvLGTUvk2+5R9njG3kHaMipOVX3pCN3Q89qAJWfgDGPpUbk8Ej9KTdTmHcdKSAbt+bPUU/G7ocGjIpN200wJMcA0q9CelIDkc8U5iOBQAg9e1C43H3FL2pB96gB+4HApvPTGKBjrQ2eKYDt3yinHOPSozjb6GnbjimA9QMYBoB45pmOAc4zT/XmgAyKG4x70qjIxRt/EUAC457U71pi9zinK3FMBc0oYmhfm6U7ox7HpUsBRS5pu75fSlyM4/WgBecmj+LH50dsgmj9aQDlp9R076VQMX0px6kU1fegEbqZJIGpaQY20fd+lADhjmj1/Sm96fnv0oJFVsYobnmkyOB2peKACncZ603AGDn8KdxQA72PNJ/FRwKax9aAFbntQvfNKuCeadx0oENyOgpyrmm49KetUAfdzjrS4/d8Ck/i9qcD8pFIBqgjrTuKQen507O3rTAOlLuHApuetJjvSAkJ7U7FRd6lPTpTAb36U7J4pv1pw+tACincY6ZptKvp0/GgAHPIFOVdtM75H6U8N+FAC4zQy0BqCw9KBWFDdz1pdvrSDkU7PFAhrYpV7E03Ofr705elADh83Sn0wEAe9G4/nQUK3y9aKRmxR+lInqO7e9MSQN90hsdcUSAOpTJBYYyKZaWMdlD5cWcd2JyTTAlU7WzTuvam/d607dnBoEKw7Ude1N/OlzigCTbQFP0FN3CgNQA9e9LUYYDpS/jQA8crTWOKUE00n8aAJEpy+9RD9KepGKAJN1J6YpqmnM20jigBSaDTd27pyKN1Ahw96ceOlM3c+tLyaYDxn60c5pu7pnpSKxpDJh9KQD5vSmKe4PFPzzgUAGelOC9xTN1Pz+FAribuo/WgevWkOKVe3rQA7cfSijcKKBnjnqDSFT1xmjvmnZ4xnmuZHbcYy4+tIrjGMZFKenrQME0wHL0welBpqt7cU7POKRIoWjGOe1Ix9OcUinpRYoMDsKd/FyKRT270rYx04pCA8LgdaUHJHahQOppeN3vVAP9B+dcnrDf8XU8NjqBZXJI9PuV1u4DHeuQ1JQ/xY0PqD/Z1yf1SkyonYbfmPOOaP4elIy4Ynr7UBfl4PFNEi5K89e1PD5X0poHHIpu0dOxoESE7un60v8ACaZj0HtQv5mmJjx93GaFyuc03bk8U4ZHFMBwUdAeKxtQ1eWTUxpOn7WusBpZGOREvYkep7VsQoC3PY15rNqUnhHx54kubhZJZLyONrWNVJMihQBgd8HOfrVEnW+H5p11LVrSS5a6ggdfLkYDIJGSK2923GOtc34Pv7HyTatMU1KcmWRJUKM7d8AjkCul2BV569KChT97pmpFxtzUe37vvTwvY9KLiFU7iPWnHPQDNMWPgetc7rV5caX420WQysum3lvLA6/wiUYZD+I3UgR0ob2pOOhpsbK3HmKT9RTuOtBQ4deaXjvTRjpnHvTh9455oEx3GMj8aaDu570vbAphU7ulADgw4yKfn8R2xTNo/pS8LQSLuwBT8jaPWm7c/jSsOOmaaARKfuAwDTM9eaXIbJNFgH7qVWDUxQDjtSg/NxRYBw/IUrfe6YoyKX60gENO9hzTf4aUNgY6UAOLcDmjzAvTrTeORSYCqcUwJd+1QfWhnzTF6DnNO6Eg9aewDd3PrmnZ+YjFNU7Wx/OnfQnNMB+aPM6joaQnHWlHzds0gHL9M04tg+1MDbf60/07GlYBVYbeaF9hR9KXp2pALHyMULnnjIpAw+gpc8VYMUYPUdKcv3s96aflPSl3DvQSP/CnK2abThQAgpwb0HFGQGpKBC8/hS/hikx/+ulz3oEPwcUqg/Wm7vlHenDr70DF+opoyzZ7dqcW5/nSLnPSmSHPpS89KO/ekPtQgF570KWZh0xjmk/iyadnpjrQAc807+Hij9KX+H2pANjBVadtpBgdqd97pTuAxgacqlsUu386cp4ouAbR3p5bqBimijd82e9ACc4GetO+99aRec0Bfmz1pgP5FIc5JzR91eKdjuR2oATv9adS8HHHNL2PFADeeO1KBSnFH0oAXb29aT7xozSKe9AhTHyOaXG2l3YWhW3EmgkXbkUKNrGj6UvSgsRgaUKcdKNwHWjOaBCbetG7PFLzjim5NAh+3djmnLjHNMVu1O4A96BCmkx2Ipe2T0pfQigA7e1Iqml696M7TgUALtH/ANegKFoXp7U4d6AEpPpTsD60jdhQAu30p2OOlMUe9PXHSgB2fbmjjrnNItJ/F/OmA9cbeKPrS/Sm/UUCFx6DnNP/AIhTR78U/HrSAXb14puMA0v8qRvzoGOWnde9RhvTgU9aYAfX3oHNFCjimhAAOacP5UlHakMduoo3D0oosB443OAODTWT5gfSnqCeKPw/OuY7BDjacj8BTdu5uKd1zilbgelADCPQfpS/xCgkZ5o5yDnigB7Yzx3pFUKD256U3nJNOGc8dKAFbsccUoGVOaXjb7nimn5uOtAClhwO1HTHpSUuc5oAkXGR6Vyl4Gb4v6QMcLpVwf8Ax9K6lRyMc1zF183xasf9nSpOfq4/wqWOJ1rH5sGkyM9OKhM2ZCByaeqZ6mrEPZs4HWge/Wk244zmnKuWBPSkIBnrTu9N3fNgcUbuOOT9KAFx0yMelO2tsYgbmAOAe5rO1LXrXTmSFm824b7sUfWoQ+qXjBgi20Z6hj+tMCrH4u+wTeTrFnJp7E4WbG6Jv+Bdvxrc/wBGvTDOVjl8s5jl4OPoaxdaRLWwd9Xvt1uePKVRlz6DuayfCPhVW1Ce8MVzZabKmIrOaZs5/vYzx9KoDrdU0m01tIvtA/ewuJIpkOHjYdwasYOeefeqFx4Zhmx5F1cWbDukhb+dQLb6zpg+WaPVIh1DLsk/DsTQI2VA46UpIzg1n6TrVpqm5ImKTpw8Eg2up+lM8Q39vZ2LrJP5U55iCctuHQYHWgB2u+I9P8NW9vPqMvkQTTCESlSQrH1PYVYvbWy1yzEM6R3ds2GXByPqCKy7c3PijSI1urSOK0mjCzR3ADFvUbfrVRfh/p+nw/6BfXmmgDnbMTH+CnIFAFs+C9LTa9q81pcIcpLHMxx9QTgit7a2Bk7z0J9TXC+EEuNV1rVIJ71r6xt0UQ3SLs3sScj3xXVrpdza5+y3xI7JMuR+dIZodBz2oHrWPDrdxDczRXlocRcGS3+cfl2rQsdQtdSjZradZSDggHkfhQIs8jpS88DrR0460Y+YHOO9MBv3jUi+9NLUoxVCHYBPtTvx/OmrS7qkQelJt2tTuSCPWhSV680wHNSKvzZ70fwmjaetNgCuP1p/Xr1qJV5PHFSDFACtxxnv0oNNY/MOeadSYB0xR94eop+Oh6+1MZljVnchF/vE4FIByfgKcKyrnxPpGntiW/hBPG0OCf0qBvGWnfejE0w6fu4mNMZt9+aXn61hHxVG7BY7C9kJ9YCv6mnnxVbwhhPb3MIHdoWI/MUCNk56/pSq2OayLfxZpF1Isa3sYl/usdp/WtOORJhuRw49VOaQExYce9PXoKgz8w5qVWHpTAkB4zQx3c0wfWnZHrSAUU9fu0xWPPpS8MOaoBz5z7ClVflpoxwMUu4cj3pi0H+1L0xS8baTjtQIX69Kd06UxakB4oAUZob2NG7pUN/fQabp895cN5cMK7mPXAFAE3PAp6n5feoLWZbm1hnQfLIocZGDzUu6gQ7PNC9OvNJx3pVxux0700IcvDUjLjj+tOU4prY5pCBQCMHpUgXbUW7djsKcxzQMcvenbuMVHmnCgBfT1paaGpc4zQBIO3rSbgGx1pu4YFB6ihCHbu1J7im5796VSM1QDsinAmm9jjrQvbNAEpXOKX05qPPzc08HvQA5felVs9qZ1x6U9cfnQAMCfzpvPenY+tHf29qCbC+oNGCKTnnFLg0AG31pwWkVeMd6C3JzQA5eGpfvDNN3bfejPWgoD3o9PWkHPandOeaBAW4x3pKMDtyaXtQIFp2eaaBTutAh27bR/KkK+vFAoAevNIFx7Un40v4UAHTFOH50z60q/L/+qgB/SkbtxQD2pPegB2dvNG6m+3Wl20ASA/L9KRfXNNFG45Api6kqntR6UzinDpk0hjs4p24dqj7jNKPagB7Gk+vNGT06Ug+8cUAKo5zS/wAR9PWloVfm6mmAY5HpS5wPShuKbw1NAO3bu1GePWk2/rR16jFIA/KijA/yaKAPIRlR7UM+3Pp3pq9fSlxuBz+Fcx3CqcdOlI3T1pUb5gKdxz6d+1AEae459KM8mnH260zlT60ASLjqfSlXO7HX3pu3HHY09VxgUCsDKdvHB96aqe/NLk+vFG4ZxQIXrilXA9jSbcc9qX+GgB8TfN1yK5dgT8Wl4yBpX/s9dNH/AKyuYVvN+LM2cgLpa49/nNJlR6nUfdYn160772O9Ix5xxnpSqu1cU0QG5vanKxPAGBigsBx096VfzNAAy5Fch48+IJ8EXFlB/Z0189yCwaNgqqBgE5Pfnp7V15zn2rG8Yww3em21tNbxzvNOsaGRc7cnkj8KYEuiaLa2MYu8m4ubj94878k57D0A9K1jIfWmJGsEcccYwkYAAxSnDLnkGgCK4tYrmSGWaNZGhJZCw+6fWpQxLgnrRjFN61QFrnFCsUYHOPWmrkKO/saXhh6etBNjz/4qXepaPq+j3umad9qByZpI15bBHyZ7EjJHXpXV6Xpatcf2ndES3coBUEY8tcdPr71r7twAOGXqOM4pGOTSuMjij8lXAOQzE4+tQ6hpcWrW6QTM6xbstGvG8ehPpVtcU4fLyaYENrbQ2qqkESQqBtCoMDFTYKnIprPtBOM0q5cAnj2oER6bZC1aTLbnlcsxPevN7Oz1KbxKLtZprW8a9lidGTERiBOz2ORj869O+meO9Y/imZ1tbMKcP9oRj74NIDTtpGmt0dxsk6MvoakGe9SSfePHHcU0LjtmmA3bjmlUUZyQOlSYyuP5VQhvPPpSBacqjpmlxtBJPA71IxTgRs3QAZqKzuIdQtI7i1mWeCQblkQggirS4UE5GMde1ectp82razeReFL1tIt9rfaNo3wSP3Kr/CfcdaaEdLqGvTy3E1jpEYu7uFcyu3+rjPXB9z6Vyml/Eq+0vXUsfEloIrG7cR22oRKQscn/ADzkHbJ6Gum8I28vh3TYdNubJoZV+9dRHzEmbP3ieoJ96t+INHtPEUN3pk1oWEy5aQr8uexz65psZrsoVyOgqP8Ai61leGWvIdOWx1B/Nu7cbPMPWRR0Y++K1WApbCHgbmBp+3aaao2rT+ox0PagBdpxwcmuL+LWl3WqaDAkB8xWmWFoS5QEuQAcj0NdnGyNvCsrlDhgD0Poa5Lxzb3em6Z9siuTNB9ugcwygfJmReh9Oe9AFPwx8IdN0PSEgnkma8Db2mjkOVPpk9q1prXWvDu17dxq1mv3lZQJVHtjrXQLcSs5WWLYw/iByPwp7SMMhTjNMCjp+uRanDmE5k6GNhgqfer/ABIuGCsncGuc12aD+1raxsRs1mVDIGX+FAeWf2p9vf3GgalBZX/zwXOQtyDx5vofTPGKQF+/8M6VqRHn2ibgfvqMH9KxZvC994dlN3ocxmjXl7OZshh7Hsa6s/Kxz1p24x8jOaQGToPiC116M7Mw3MfEtvJw6H6VrfdOKxtf8Lx6ti7s3+x6onMcydz6N6ik8M682sxy29ynkanbHZcQ+/Zh7HtQBt7h2pcj61GvXNSDt6elMByt0Apw55/Ko1G3n+tOVu9ICRacF5zTR8uDTl71VwHKaUj5jx1poI3HnFOpkjl+XFK3zY9aQcn+tKenoaAFVvWmXlvDe28lvOgkikGHU9CKVc96cf50APDKqBV4CjAApFX5fU0z8aerbcUAKG7c4qQL0qNeh7CpUGQfrRckNp7ZzVK+1ez09cTzKrnog5b8qfq00tro19NBzNHEzJ9QDWJo9vY6Re29u48+9uIfON3L8xkbuB6daAReh1yCd1j2yR7/ALjSKVB/OtL5uB3rH8ZXH2XTIJusiThwB/sqWP6CtW3kNzawzYwZFB+mRn+tAyYEbiKeOhzzUeQfrSqTt/xoEOXk1BqGoQaZAktw+0SP5aj1JqZffj1pJoIrry/NjWTy23qG7H1oEO3buQMU5Tmm7hk5+9Sj72fWgB+3v3oyMU3O6lHyigB38XtThj0xTVPGKVaaAd96lDYBz0po5pdopgKG3KD2p4qMDHSn9DQA7kDqfrSjvSBh07U3d1oAeG606mgdqVuMZoAN3UU0Dc2ewpaVT8vqaBC4+maAKWlXvk80DE249qXOabnPOOPek7UAL06fpS7uaZuHWkwfwoJuS/e60Y96b05FL/KgQ8Uv3c0gOKPve9AxxOetCkHpTWpF45oEP+vWjoKQ+vejdkUwFFLyRSKPWndqQCr65pW/Oms3NNVuaYD84zR0pM5PpR+tPoBIvbFDd+aaCNvoKX2/pUgCnnNP3enNRntxTulMCTPHSkDULzS/hSANxxRuO7pmkXlsnml4oAXNLt6c01vvCljI3YoAeOuTikORzSNTjTAM+wopu6inYDx/7v8A9el5NM5LHNPFcp3C44pN35+lOz1pgO760CFH9etHcUnrRw3t2oGPHDHv60Fqbu5x1HY0BeetAAzH6HrSr6d6XGRkc49aa2R0FBJJ6dx3p2Ce+KYueMHBFPXA6UrDDaxIwTj+dc3at/xda8B426XHzjpl2rqFb5vauXs1P/C2taPUf2Xb5A/33pdRrqdO43NkdBSbSpb0rK8UeJoPClnDeXltcTWJfbNcW67xAP77Ac7fcVrRSRTRwzQSLPBModJFOVYHkEEVoQLtGRnnFPHTHauYs/FF1N8RtW8PNbqbO1s4rlJl+8GYkYP5V0u4YHXmkA/d15rE8REyax4etwcEztIfoEP/ANatheGyetYOuNjxr4YGPlZbgZ9/Lz/SgDoGb5j6e1R55OKfn5sd6afSmArdc547ikBHbmjHtinKwU4HP60MCTmnAZ/Lmm5G7ikzzwaQDh8p9aVRg8HmmkknpxTl64oAdg/5NISQeeRRu4IxxSkbvc0AA7ADinBtrdOc9aNvAB4pMdPWgCTIwcDg9qxNZ3XGqWluBkx/OeOmT/8AWNbKMFUseAoyayvDtwNQuL25ZeZJBj2UcD/GqEa7sN2e1L+GaxfDV/cXi6pBdNvms72SDdjGU4ZP0IrZALcc0kAuznINRXzXMUKfZIhLK7hfm6L7n2qwGHTB9Ky/E2nXmraeiWF21pOkgbcrFd49CRTJDQ9Uub6TUbW9jjS8sZhEzRElXBUMGGenBrWaNJ1aJxuRxgiue8N+H9S8PCTzNRGpGZ/Mladdr5xj7w64A9K29QuPsdjczMdiohO78OKGM5XWdHOpXa6RpV/dWyD5rtllLBU6bRnoT7VvaXpLaHBFa2xjNsgwBtw34nvVbwnbpa2zh+byb99Ngfdz0BP0rb3d8fnQFh28/d7UKx3daZkk0qndjsaYFDVE8iW3u1Izv8t/cHpVqcZgYkthQSdvUgDtVbXoXl0mUg4MZDjHsansbn7RY28yj76A9e+KQjn/AAffG+1DUyrTQwgqI7W6J8wYzl8HkAn+VdXH94GsnTdKkt72bULyf7ReyJ5a7RhUTOQoH1rS5FUM5aS8utB1bxVcRWFxc71W5j2r8rMEwRn8BU/jC6XVPhne30a5D2a3SgdsAPXUK4bKsMqwKkfhXOtpcWm+C7rRWuElIs5YY+eSMNtGPpgUhG3HILi3glByJI1b8xT+9cx8N9aOt+AdAuGD+abSNJGYdXUbW/UV04bd1pARGztvt3237OouzH5fnY525zt+maNQsYtWsZbW4GUcZBxyrdiPcGp1ycf1pl5NNb2c0lvD9pnVfkjzt3H0zTAxdD1vdZ3UF/MoutPcwzN0zxlTj3BFS614mi0lbCIQvcXt8xENupAZgByeewFcxqmj3nh/WrHxTftHcNKVhv7eNf3cQPCuvrtzgk+tZHxO1aLTfHNg8rGVrjR5hpuBwLgSJkk/Qj8jRYD1DT9Qjv7VZ4vl5IIPBDDqPqK5/wAZWUmn3dv4ksVbz7X5bqNR/rYe/wCI61p+HrI2ujwh5Vmnm/fSvH90u3Jx7VpoofckmGjYbSMZpgR2t1Fe20c8Lb4pVDKw7g1Nn3rmfBofTL3V9DkbK2Ugktx/0yfkfkcj8K6Nc/Q+vakwJk+8OvTrWbomozzXN5Y3u37ZbtncvAeM/db8v1Bp+o6rFpl1p8cx2rdSNGHY4AIBIBP4VntcR3Pjq1+zSLIUsXFwUOQPmXYD79aQHRg49xQvOc+lNV/mp3DZGeaAHKAOtO+mcUznA9uKdyDjpVEjt3IxQzc80cdKO44pgL6dM0rUhBVsAcUvX6UAAOABnNO4poUUq0ASjmnbsN7U0YpVx1NAiQDIKscqwwQe4rjPFWiyafBBcWMwL28oaCORuVJOCoPdT6V2Ei+bDIgZoyylQy9RnuKzrHw3Y2MizP5t3OpyJLhyxB9RTWgvQ4vx14shuPD+nByYLma4W3ljYYaJm4OfbBNdHZ+L7GaaKG2WZoQRGJjEypnoOSK2ptNsbi6FzJaxSTqMB2UEisrxNexwwTWTQSb2Cm38uMkFsgjoOOcU27hqbW3b1PNSr0qKPd5MYcfNtGeakXvipGKOtOXr171m3l1KdasbOEcMrSyt6AcAfrWmQB09aBWMnT2+zapfwSH5i+9dx6qQKvXlwtravN94KQOD61Bq+jpqTJKs8lrMo2mSPGSO45qa508TaTLaxks3l7RnqTTETRtujU9c807d69KwLPxNarIltKs0c33DuiYDPpnGK3h696QDlp/WmqKc35UALQuQOtC59KM+uKoADZPWnbhu5pFwc8UKPSgB3TgU4cVH92njvQA7Py0nc85paQDBP86AD6Uo+8MGl7emaFx0oELuPI70vb3pBjOaX260DG00tjpzTuPxpu2gQ9TntS7hnFIq7T7Um0Z96AH7hjApwpmMdsU5fagEGOaBnv0opGb5vWgQv4c05e/6UmaXdt96BCil96aWNKrdKYC80Nk8dKMhuAOlG7HHekAL8op238aB0paYDmwe2KjPy45p26k2k9RwKQB+lOU7h6UDp70vGQe1ACcbqT1p348daUYagBY2pd3ajpxSd+KAFAPal203dx7U5WNABSqvSmt09Kdn25oAOcU9TimZ+opR1HpTAXIopefRaKAPHV9qXcG5po5J5pHjDYxw36Vyo7hx55zg/Wjdx70BeOaPun1pgOA554prHng0n3fcUu5cUAOChjnPNDKQBijb8oJNGSenPpQAIT604/pTMkds0/mgQu7geppeeoNIMcU73pXAcgPFczpoz8VfEDZ5XT7Yf+POa6eM5YYPFcxo7Bvij4m9RZWq4/FqXUtdTrk2sGV1EkbDDIwyCD1BriIon+FuoMu2S48FXTl1eMF20uQ8lSOpiJz0+79K7P8A5aVKsh5B5UjBU9DWhmcH4Guota8WeLvEELrLZyvFa29whyrxxrkkHuNxPNdJqXifStJ0MaxcXaHT3AKSp83mZ/ugdT9K04Y4YFKRwRxRHOUjUKOevSudb4d6XJoFhpEzyT2tjeC8tiT8yMGLBfoM4piJ9D8a6N4l1aWy0+58+WOETt8pG0FiMEHkEEdKo/EGc6TdeG9YPNtZ34inPosqlN34Eitq50GGXxVba4hVLlIHt5cD/WKSCM+4IqHxdNp7aLc2WpHdHeIY1iQbnYnptA5zSA2JMCQgUm7PbFcIvivWtD8OQiXw7qF5NbRhDMVX96BxkgEkEjHaul8MeKdP8ZaWt9p0h4+WaCQbZYH7q69v61IGl5m1uRxUi4zkU0tnIIwacox2+tADlIK/zpfT2oUUv8NMAHzYJ6Ucbs03HQ0v3vpQA/8AlS596aB0/nSyOkEZeV1jQDO5jgUAPHbihvyBOKy11mS9Vk061acg482T5U/PvTJNFn1Ahr6+lC/88bUlF/PqaAG+KNattJ0eczXUcDyDYGZhkZ9qq+GPENibWC2iMzSOMlhA4XPuSMVRvvCumrrFpBbROJCd8jGVmOOvJPNdE2h2cinibA4wJ2AH61RJoRiJHdlVI3lOWOMFj0yfwp25d2Nyj8azF0CwCY8tm5z8zsT+pp/9i2LHm3GOnU+lAGkDhgAwP407aW6Y+tUF0Wy6iI9OTuOT+tKNFtdvymZfpK3+NOwiW/a9TyxaQxSE53NK+3H6GsPxRJffY7WC6eFUml3ERZ6IN2Mn1xjp3rabS4YIwftk0KkhQXk6k9BzWL4s0W4mXTAt/I7falUeYgPB69APSixZtaTZmz09FkOZpfnkbHVjzVysabVtRs737KYINQcJ5hS3Yq4XpnB4/Wkt/FVrqFxJaWas2orxJbzDY0fuwPakK5udeB+dNK7ec496pLY3UrKZ7wp/swqMfmaRtDtpGYu08hP3gZWH8qALM00c8MkPmJvkRgFyPSsrw3cldDjGGdoyVwBk+ta1np9pbcQRRqQcHHXNc5oeow6P4Y1DULpjHBazzPK/oqsR/IUCNh9Sm422E8gHfgfzNPW8v26aeVH+24/pU8N0l1bpLG2Y5ORn86nVuhByaaYFaO4vxjdZJ0/56VW03SzpdxI6abuaZmLyyTb25PTntz0rXXNOKiReWYYbnaaYHnHw/wDEH9kaCNOuLaSOK11G5tBMANijzWYZ9ODiu+jkWRFeNhIhPBBrjNMaDwxqnxCWVPMihcaqI25DRtF8xx/vIa04dJvIbK31HR2EM0kSyvYSEmJyQCVB/hPvRYR0qkLTtxVeBk1Q0TWIdeszMiPFNGTHNBIMPE46qwrSj57jOOKkCpq2njVtGvbJ/wDltEwGfXtXlPiTwjP4qTwrrtsr3U+iSfvLItgyRn5ZVB9Qe3fFdxa+KLzw9erbeJvs9sszE217G37p8c7Gz0bH51kaTrEi+LrnTbcfZLS/c3lrLOhDuCPn2Kfdc5PrTQFTSNX0+18YafF4fkdtMu3a3nh+bZHIFLZAPQjGD9a9FZxGruc7VBY7Rk4HtVKHRdPt9QN+tnEt4w5mVQGJ9frV/cVOc1QHHXGpQt4w0bV7KZZrPUo2sZccESLllyD0P3hz61saLqUuqaprgP8Ax72lwLWP0JVAWP5nH4Vj/ETQkh0ebXbAi3vLGRbx4xwkxU5OfQkcZq18PdMvtL8L51JVTULy5mvZlU5AMjlsZ9hgUrD6G/eWlrqlmbe8hjuYGOSkgyMilsNMs9KjZLK1itUY5bylA3fX1p6rx61L7A5FLYQ9cUqttz60g7U7j0oAcGHFPyOucVGq4zSrx9aoQob5s9vSpB0z1qILj8akGOKBjy2WzRwPrScH2pCp/wDrUEjt2acDnHFRbTt9CKkXOKAHqfXrS/xY71GvBpTnr1oAl3U9T/KovQ9Kdzg0CF4Vj3oZi2OhxyCetN3dOaVW5xQMCSacMUw05elACqirIZAo8wjbu74pwb5c0xTmn9enWgQcc05W6Gm7epo24oEOb5uSFJB9KX72T3pvtR39qAY719acKauOR3pVWgLEseOhrG07Tbqz1jUHeUtZuQYgxyQe4+laxI9aVmp3AbTl9aj7ZxS8qvvTEPpyt68GoxThgfWgCRe/NHvTB97rinE/N60AO7HuKTIzTTnt1o9jQA5m5yDzSoxK03j1py+lABznmg/lStTc5bAoEP8A4eaQt0o696Xo3pQFxTzSjp6U08CgN60BYfj8qTqaTdSr60xWHfw0mT+FKp4J70mfQ0hCbscUvTrRxxS9eg5pgKOuadtHWmbtvJp/8NIBy0u7j1FMXnrS8jigBf50gOGoHrSbeaYD9/rxSfeo7c0mfTgUgHe1AOPoKbT89KADk0/3plKrY60AL3weaX3FNJwTjmjd0FAD88jBpc+lNFHv29KYDvvH3pRkfWmc/hTlP5UXAkw3tRSflRSA8cwGYkYzQGYdRmlyEycUZyucYrlO4CeT6UDB7UjdOwoVgPc0AO/WjaNuOAOtNVi2cetHJ6nAqgHqxC9KapYsDmlDFetH8J5xQIeMdaX0qMN+Ip4+Y0DFyBxTlam7htzSls89qBEsedwI5Ncn4fYN8UPGGOi29qv04Y11cJywPb1rk/DOP+FkeNyOeLTj6Rmpe5a2OuX73PGKev3W53c1GrbmOelPVfrVmQ7jaeMf0pBg9KOOlKBzxTAfHHlsnp1Nc14T2aqlxr8/zSTMywM3/LKJSRx9cE100f3tnTdnHNcr8M5kbws1jMoMtjcT2dxG3Xhzjj0KkH8aYi7Lrd1b+N7OxDqdOvNPeeJ15zIrDPP0P6VmeLbGPQdUsvFNjGsE6SpbahHGMC4hdgoLAdSpIIPpXH+JNP1vwN4i0OCwhk1DSBJMmnSgF2gaVcGFz/dBGQfwrttfha402w0DzTLdzmMzOeu1cFmP1PH40ikdNJhXYHkdqFPJHvTZMNJnNKvNSDFD4fHOF7077xwTim5DLkCnqB1NUSMZfmx0p6nHAzmkbA60v8Q4waYDo+WGeKyLeBNZ1G8kuD50NrL5UcJPy5ABJI7mtfoeOnXmueurweE/EFzcXQddI1La5nAysEwGCGx0BAHPTikhnSLhVwAFA7DtWB4uv20O80PVnkddPjuDa3YHTbIMIxHs2PzrZtbq2vEElvcwyxt0ZHBB/WsvxLp8fiizk0dt32WddsjJ1HuPcGgDLvNWuVvHttPRZNbvs+XkZW1gHHmP/Qd639L01dHsxB5zzyE7pJpCS0jHqai8O+HYfDdu0ayyXlxJzNeXGPMlxwM46AegrRaP5c45pgJ/DmpMcVHCm5TgVOIz2NBNgHy4qTI4prDbjoBSMRuHzqB65qxDNV0uz1zTZbG+jMltLjIVipBHIII5BBGa5GC+u9H8UadpGtXHmW1tFLc299IQBPGq8bj/AH15B9etdZNq1jbjE95DGR/CzjNct4zm0rXNS8NxzWv9pQC6ePbsJHMbY5OB1FAy74FSW+XUdeuFMb6nPvt1YcrbqNqDHvy341XtFS+8ZaVdQlWmjtLg3Lr/AHWddin6YNbflandSbN0emwD5R5eHkx/IVlJpc3hGYS2ds15Z7mLheZCGOWz64NJgdRn5sdKN21qz7PxDpuocR3cauesch2OD7g81e8yM/ddTjrzmkBia1pt7p9+2s6OxlmIH2qwLfLOAPvLno4H4HGK8217xAniPwWmk2YeOTVvEa2DIw+bZvEkgP0UEV7VDhpFAYdR3rzTwz4VtNf1geIjKY3s9avJUt1PyMQDCG+uATQCPQyscYWNECovyhR2xTkfbyOvSotwZgNwPPAyM1KhG3qM5pRGTRt8wJPSsi68OTxXk99pF/Jb3Mjb5Le4JeCTp2/h6dq1o/zFSoxDdask8a+MWt32kQS6mNPlhn1DTpdDu4PvLucjypFboRuyPXmvXLYG1t7aH/nnCiH3woFReJNBt/Fnh7UNIugpS5iKK3Uq2OCPocVzfgPxX/anhaEXu46pYM1ndxAEvvQ7Qce4AP40ho1fK/s/xpFJHxHqNs3nL6uhGG/IkfgK3MYJHTtWbb20lxfrf3A2NGhSGPqQD1J9zgVo7t1SBU13QbHxLYi0v4vNRTujbPMbY4YehFeR/FDVb/w7ceHdUvQTqOhXak3AGFubZjhj9ducj1r2jacA1yPxY0iHXvBdxayx+aJFZFkxzGxBwR/nvVCOrZlkVJUYNG4DKw7gjIpoPI96y/CpSLwno0cc5uUS0iRZWPzOAoGfrWoOfagDK8aW/wBq8Fa9F03WkmD+Gav6exm0uzdurQoT+KiqfjJtvgrXmHH+gy/+gGrmljGj2AA6W8fH/ARSuUiwF21IOnTNMU0ufl9KQiRhuUY6Uq/KwGabxxSr97FNCJFzjik2njmnK34GkP3qYCx7t2D07Up/WgZVgelO7jmi4B+P50rN6/ShunqKTnBpgDY6dqXJpu3j1pV/OgkeueacOnPFIvbHNKfrmgB/PTFKrfLTM7epxS53KeOKADBbpxTuMYzTemRQfegAwx6cU7cVpOinB60m07Mk80APU+lO565pkfQ9hTue5oEOHpRtNIv0p27BFACbev6Uo54IxSbuoH50Kc/WgB3TrTg3am96BQJD+340v1pgb0o3DpnFAXFI9Bml4P8AhTaVetUIdS7c8nn0pv480MxGDQBKMHp1prKM0i5/Gj9aAHrj8aOMe3amk+lNyScUAPx+VOCkdKb92nKaAF4bgClOOwpMgdOlKe9ACc9qVRnAzSfw80duKAHN6UdaKVaAE2/Lzmnbfl4PHWkzSigBw6U1eTS479KVRQIQ/epytSFd1AwKBDmxkE9RQMAe9IKRh1oEPVhgk0uR160xcCnY6E80AKKN350gOSaOG46GgBx+Y4ximZHQU72o2lhQAg4bA/8ArVJgU1VpzYPvQAZFHvSDpSjnigBc0cUw8c0KfTrTQEi/Wl4pop3JoAUelKvrTeT1NO3YpALx60U3dRQB5Dxtx19KXquM031PWnDG3iuY7hG+UZ6mgKcc05u1G08GkAhXbjBpePXHrRn8TRt4qgDoOeRTTz+dLu6inL+tACKOpz1pVJXr06UYIFKuenagBeMEYpenGOPWm88E05m6cCgRJDlXA7Vy/hYBviB44bHBlthn/tkK6eLDSLnkVyvg9t3jTxuSeFvIVB/7YrUvcuOx1rY7daXn1x/OkzTly1UZsQMN2O9Ke3P40N1Jximqu5Tk8VQiZTypI5B4rl9W8K6hb69Lrnhq+gsry5VUvbO8Qtb3W37rccq4HGR1rp0Hy464pN23GDzRcRz27xldfuzFpGm56zxzPOfqF2rz+NVNBu7XSPFl3ol0tx/as8Qniv7nGLxQMsE7AL/drq8nueaxfGegr4h0Ntrtb6hZH7VZ3UQy8ci8jHqD0I7igZsfz6GlXA6jFYHgXxhF420dpSqxalanyr21J+aKT1A64PY1vR56HrmpGh6rgnng1Jz+dNHGcmkVjnB474NAEnHQ0nXNJuDc5paoQ4qdvNBkxGVIDBuoIGDSFtvfmobq6js7WSeZtkajPI/SkgMbVNC0NlMk2l2ytnlo49rsfQEYptl4F063j3k3ttM/OLe9lUKPQDdWlpsMl5tvbpcMRmKH/nmPU+9aG4565pgY6+FxHkRazqqDtmcOR/30pp0eg3kK4XXrxgeP3kcZ/wDZRWrzg05egAGaAMhNGvNwJ1y6HYhUQA/pUi6EtxvNxf6hLtOOZ9gP024rUC9fWnqoGN3NMm5mL4a04jBE8h6/vLh2/mamj0LT0jwbVWHcOSf61eChWOBipF5zmncRFb6fZWe4xWkEI6kqgH9K5zxprFvNoP2m3ScvY3EdyrLCwXCMC3OPTNdWB7/Wo723F9p11asBtliZMfUGmMSG5ivlE0MiujjP9aerY4HT61i+Cd0vhLTXmw9zFGIpGxzuX5SD+IrZPFJgR3Gn2d4f9JtIZ/8AejBP8qRdNtF4S2jUD0UCpWwMHP4U4N1weaBETR21jbz3HlhEiRnbn0BzXI/DfSIP+EG0maVA8sxkuC3Q/vJGb+ta/jqdofCV5ED892UtFZf+mjBf5Grmh2J0vRbOzKbPITy1X2BwP0pDK/8Awjdp5+/zbhSTkbXwBUyeH7dR8txcAf8AXQ1fo45BqgK40eJMfv7k4/6ampf7Jt2+YvMfUNIean5XApclQR/k0xDY7G2RlcR/MO5YmuL16NPAfjiLXEXZoutFbW/CjiGYcRy/Q9DXcqBt4rO1PS38RWd7pd/aRNpk6FPM8w7vY4xwQfegC82Vz3HrSr29q4zwFq15p91deEdal8zU9OXdbXDdbq2/hb6joa7TpkA9ulSAksP2qPyyxQbg3ynBODnFYepW2peJrK/sY4F0u05RJpvmldl7qo6DI6mt5fapFk2yA7u/c0AcH8Icf8ImbaVjLd2NzLauznJAByo9uCK7bb83tXG+FITpPxF8X6fn91c+Tfp/wIFTj/vkV2fC9ODQMxPH6tJ4K1KJDgzhYPruYD+tbaIIYYohwEQL+QxWD4zY3H9g6cDj7XqKM3H8MYLn/wBBFb8rbm3UgDik6cUi/Nj0qQqM+9AhFbGfSnIN3JOfak2+hzTl64qgJNw9KVfegccdqYG5pASZ55pec9KjGV5zmnbv/rimBJ260Njaefzpv8qOWFMB2TSgBcYpmaUdcUEkmStKvzL701WAY9T7GgcdetA0OPqBS5454pM0jZyKAHtypoFICPpS+9AhV6UAH60indmnCgBy+nalXvwKYufSn8DrQAv3uelKvJpmfxp24g0AA6Uqrnmo9xyexp3PHrQIXOM0u7kU2ngUCsOAz1pGx3pDnvzSc/WgLDwf/rUvH0pi96Wi4hyj86WmlqUMaYD+aD1JpM9PSjlqYDuMU1PvZpOT7UL1oAlb5uvWg4Yj2pqqe5p3K/SgBe9OpnvSYPY0AP3L0pKjClacqlRyeKBEm6lXvSLwvPWjj0oGK3y5JFICKM5bHOKRk96AH7+M/hRuA71Hz070Mp2+/agm5Nu3d6P0qBc7cGpOaqwDu+KTcRR3o9SetIQ9c4H60p60xWpaQDs/jTlHr1pn0oVs9aYEnTOeKXPH/wBemMu7HpS7enOaQDh1/lSkCmegFLuxQAoODinZpmD1zzS896ABsfWlGPSm7T2oC465zTAfn8KVe3FMKg8n+dPApAO780bh34pAtBUHvQAZopfwFFAHkI9vxpy9D2qNsbetLv6jOK5jtJAc+1C4zzTTgtuI4pQcnH6UhijnpSjOcZxRwq8UisDnPNAB2zSYB6cfSkbPUYPqKRW49B3pgP3fLRg4460Y3cCj7vSjcBy570v3celNVj0PSjvmmBJCfmU9q5PwRiTxZ46YHH/EwjU/9+VrrIcbxn1xXJ+A1z4i8dOD11UDj2hSo6lrZnWknoOlPjyuKTjcDT++eq1ZlYXd+FJndwM0nqBSjHGOKYh7fLx0zTOfz70pUjGT9DQTxkdKQB3yfzp0bPG+Rx9aarbhT2w2B7UwOT8YeC7qW/TxL4WkjsfEcC7XifiG+j7xSAfoe1XvCPi638YWc7CCTTtUtG8u802fiSB/6qexreU7ec1zXirw3cTXsPiPQ9sXiCzXa0ecJeQ94n/oexoA6Ln15o3epyaz9A1618Taat3aho3BKzW8nEkLjqrL2q8AT7Uxj13buenrTl69c8037q8mkmuIrOAySN8vTb3JouIklZYYmlkbaijJNYgV9fvlMi/6FAwYKRwW/rUSx3WvzuXdobXOPlPGPQep963YY0t4VjjG2NBgAUwJVJJ5p2PfNRRsN2KcGOalgP6dacB0wajRTzk0/wDh96EMcv3qUfeFA7cUgFUQxzDee/FSL7dajXO7P4U8d/egB+MZo8wRqXPReT7Ui5NOHDe3pTEYOkmPS9cvbNXBtb0/bLds8ZP31H48/ia3GUrnNZ2teH4tWsdtuFt7qI74ZI+MNVHw9rkkypZ6iRHeDKq7cByOo+o/WgDeVef6Gl29+hoxg88fjUkI8zlTuB70Ac34mJvvEXh3TM5UPJeSp6hAAufxYflW/I25+vFc34fmTW/FeuawMtb2zDTYD67eZCPxOPwrpGxjIFAwZcMDQ2O/alOWxQygcelNDYqsfTrTmUL05pqjHI9KfuzzQSOXoKevy4IOMU1WH4U7OOKQHPeNvB7+JI7W/wBOuBYeILA7rS67N6xv6qah8E+MF8SLcWV9b/2dr9n8t3YseR/tr6qfWugewgmuBPIrO6jCqW+Ue+PWsLxp4JHiZrfUdNuf7L8R2fNter0b/pnIO6npQB0e3bTLia3tofOnmjhRf4pGAFcv4Y8cPfXn9ia9a/2P4hjXLQOf3c/+3E3RhXVyQxyfJKkcwHO1wDSA42PV9Mm+JTXVtcpdLNpQTfbnzBlZDkcZ5wRXYRsJgrgEAjjIwfyrA1lVh8ZeH5Y0VMwXER2gAfwt2/3a3priO1t3uZW2RRoXZj2AGTTsV0MC+/4mPxC06FeYtNs5JpDxgPIQq/jgNXQcbuOlc/4Ns5I7O71O5JN3qkxuDn+GPpGn4Lj863xyvsKQrD+B2xTl5FMUZxT+lMQuSOgpVwGzTVb1p+M5FMBw5ORSleT/ADpF4zzTjzSAaH554x2o9+tI49PxpwAx60wFDcHPNGTtzj6UjA8Ypdp2YzTEKrcAGnde1NQcDil9P50BYcOuev1oo7/1pj7sjaAT70ASK3zYpT6/pTO5wKePXOaBATtUkUc9KQ9Ce1L3z2oAUArSq3T0oo60ASL9aD93OMUxW+U0uSBQAD86du3Dpmmr696cDxxQArLuUYIWkjyy5NO25yM0n4cUALzu605W4z3qMMR15pwzkUgHNn1pBQaMimIA/XipFPtUZ5HFO4xQId70U3d2NLkHNAh+fwo42/1pqmg+gp3AMn0pV9+aQUoGDTAfu/CnbvamUMaAHj1oDelNznil/SgCQqNue9J0x3FIG/GkZttAEn8NJu703t70u3bz1oAXJ6UvvjFNxx6U5cKCKAD3xSqTuzijPOOopPp0oAcyg+3tTeS3pSe9Lz1pkij8jSsop0WGIyeKr+TMXZpCAM/KFPagRIB705SeKaMcDPWnr3p3AXNAoHel+71ouA8CgEdKaG7ZpQAtSAuTR/OmH0pV60ASL92m/jRu44NKMdDQActTutM7cAgUKpDZzQA/tilztxzSfpR1xjk0AKGNOXOfSmMuMEGgMQeOaAJeaKj3D1NFAHj+DyCe9PAK9KA3PrT+GwfWuY7REy271707aBz0pNoHt24pd3c0hjueRRx3pO3WlX0P0oAVV3EjOO5JqC3ube+g861mjuItxXfEwZcg4IyPQ0X1nFqFjcWc5cQzqUfy3Ktg+hHIpmmaXZaHp0NhYQrbWsS4WNefxz35oAsD27U7Ibg9aZ+OBTyv400AnK4pV3DBIpRuHenbhx60BewRLumTP96uT8AZ/tLxlJjG7V2PX0RR/Suvi+Wdee9cj8PstceK3HVtYlyPoqipe5otYs61fz9KXcVGBwabk5x0o59qoyHKCxzjinjC47U1SSN3SkLM2fp3piJO4HOKMBgOeKj3H05ApQx2+lADgvpzSr6UzLD0/OnqeaYhc+2faljkP3hwexpOWkGCM1kXWpa+sjpZaDDIikgPcXqxg+4ADGmgMzxX4Lu7i+Gu+G7hdP12Pl4zxFdAfwuO9TeGfGqa7M2najato2uR8PZzH/Wf7UZ/iH8qDfeNmyV0bR1+uoOf/ZKpX2n+K9cjia80vS4buBt8F1bzlnQ+gyB1plHV3N0tvGQn+kTZwI1P8/SsqGwn1aUy3h/cKcKoJAPsPb3715H4R8LeN9B8bC/vZjGdQl33Fqu14GjC4OR94NnBz05r2Qza7tylvYMR/CzOv680CNVVVAqKgVAMBRwKRl9unGPSsz7V4hVd39m2Lkc/JdkfzShdR1VGVJdDlIY8yJNGQv65oA1MY6U7PYU3aemeeoo5Bx0pCJM/LilX7oFNX7p56dKVPmxSAc2dwxyMUobGMDmm88Uq565qgJFbn3p3fio8/NntSbSx5OBQSTqe3WlbPbrUYUgcHAptwJ/JcQMgmYYVpOgoAnLeRG0rbgqjPFYOradZ6o32mORZYmwJhGfmBHSRfRhS2+l+IIlJuNcifnjbZj/4qo7SWfUPtA0/UbG+eB/Kn2wL8jY+62D15piLGm6pLDdDTNSx5rLiC6/guF+v97HasvxjJd6Pp0emaLcNDq+qP5FtGx3BF/jk9gq8/lUPji2ul8E6mdQvrbT4wmI5okPmI5+7sxzuz0x3rlPhr4F8Xx6g2u61qJs5mt47e3hkHmv5YHJbJ+QscEgHPrTKPSPCvh1fCvh2z0lJDObcHfN3kYkksfc5rT54OMfSsq+mvtLsJbq/1G0toIwS0rKQPyzVLQdX1TXFWRbd4bZgSk88WwMOxC5zz9KQzoTgtk04gsKhg81ox54CycghDkexqfbwCetIkcqhe9L+NMVfU045HWi4x6+4pwYN9aiEgYetL+lBJLnP+NOVefeoUb/INZWuafqV1exS2N/b2qxx4VXXL7j1OemPwpgReLPCEfjZooNQWKKzt2Dw3EJIuVb/AGWH3R+fSufg/wCEh+GrSi5in8TaGxyt9Gd11Cvo4P3gPatSS0uo9UtbG78VTJeT/ct7aFCcDqT8pwPc1vQ6PJDJzq9+x6/fXn9KYHLX3i3SfEF74TvNKv4blHvJomCt8y/uHbBB5Byo4Na15N/bkqaTCQ8SBXvZB0HQhPqe/tXmvxd+GUWlyDxFpsgg1NryBopRIEfcTtPA65z6V3HhnwLJo8NwJLy6MFyqPIrykO82Pnkyp4B/u9BgUFnX+XtUKo+UDAxSKpJIxxjtWLfWWm6Dp8t3dT3QiTrm5kZmPYAZ5J9Ku2ukWzRxSq11HvUMFaZsjIzyM1IF5RtIpx6dajijEMYCuzY/vHJqRqCB20bsDNO3Y69Kb6GjPaqAkVhml3VHjp+dPP60ADfMB+tKM8D0oDdATj0pR34pgJ/LFP3belMxmnYC8ipAXcMelAYUL6d6TBU/zpgO3dPSnDimjBzSjOOtMA3cilDbsmkP6mlH4UhICT060isRx0FOyNp7Uv060DAncP54pR701jkZFKucc0yRRjd0p1M3BfpS/SgBwbdSqfTik5xRu7Y6UAP3ijcfrTVPege/NAC59qcp9uaYw49KVXOKAHZLL0pNx44o39e1GePegBdxx0o/CjjvS8+tAhc/nStn0pqL19aVu3OKCR6579aQsKRWKijPU0AO3dqM9Mc0mec+1A+8e30pjF3HkZ59KdySKauNxPendefzpgO3YHFNy27pxS7ec5o5bFAgDH6Uc8ZoyKetABT93HSo/YUA5OKAHFiuMCkBPfrTtw69vek3DqeKAFGacVLGkVvWl388dKADaR/hS4NGR+dCsD7GmKwq5HtTs0itR0X1pCGkGlXIpFOTk9KcrZagEAJFKPm5zSZ+bmk5XoMmgB209KeFwvWmBjtHanc0CAA+tL0pOO3SloAQLhqkbA5FRt94HrTgwI6YoAdn8RRgmhffilC9e1AAufrS7qbmmbs8dqAHFulLjuDUdPVqAHZNFHFFAHkjD0/Snhh1PSoi2OlHLYA6VyncS8/hSj73qPWmAngZxTt2088ikUOFIO653fSkGe5oxtJI6e1WSGMqPWn7R2pik8cd+vrT9vYdc0gDkdqUfTFJ0HHXvRnK0IB47jPFL17flTQ3AxTl5yScUxE1sD5g+tcd8NHE0PiZl6f21crz/stt/pXYWq7ZlOM81xnwqw2j66+OW1u9Of8Atqal7mi+FnX7qco28ZwaRvyNC+9UZdRcfN396X8OMUnrgUv05FMA29x1pemOMc80Y2+9L/D7Z7igBWx+FB9qNvoaO/OKBjlX956CsnWru7urqLS9PfyZmXfPcEZ8pfb3PatdcdRxVcafbLfSXgVhPIAC24449qAJIV8mKOLzXk2DHmScs3vVPXNRuNK0e6u7eEzTIPlXsD2J9hV1lz3FNwQxGR05GKYjN8P6YLKD7XPcC+1C4AM1xnI/3V9FHpWpJNHDC888ixQRjc7McBQO9NVVXhVCqOQFGP0rK8Q6KdcvNNgmYtpe4vPCvR2HKBvbNA0Ube7u/HUxkgaXTvDyN8sikpLd+4PVU9+prp441hjVEHyINoySelO4j2ooCoowqjgY9KPft6UhMB9aCvzD6UoXd3oByB2xSGKuPxpRxzSfTvS5+UUAO25HXJo3HbRuGaQLtzg+9MVhR1zTg3rwab95qXHpzVCHI+5sdadITyMZ9KYow3tQc7j60CMTxpfXiaZa6fp8v2e71Sb7KLo/8u6kEs498A498Vp+HdAsvC+jw6bp8Qjt4+SSctIx+87HuxPOassqMFDIr7Tldwzg+1SKT3496YGVq3h/+1vEOk3s+J7KzDOtuxwBN2cjvjnHpmtnmSRiee4pm7mgSAYx0oGczpegTa5ftqviDMrRzMLTT2H7qAKcBiP4mPXPbPFdTIxkXrn6U1pN2CxzzzSckECkAo+alGdoHeosncOME0/JFMB68k0ue1MXHb8aDxnHr1osIePlOe1DD06UhbI9ad/LrTsIF44HesnXvEL6fJFp+nQC91m4GYoT92If89JD2UfrWusm0nnNVbXTbaz1C7vo1InuceZnnOBjr6e3SkIreGvDsfh+OaaWY32q3J3XN645c/3V/uqOwrUvGnjsbhrWNZLkITGjHgt2Bo5Zqdk7fekUjA0PQnyup6t5l5qrDGZ1AWD1CLkgD9TW8WGdzHgf0oY7u/PqaZt+brxVXAwbPT5dd1T+0tRTbaW7f6FaHpn/AJ6t7+g7V0W45zTABu6c9Pan8jIz2pAIrDrjilzkjqDTd21QKUetMB/Bpp4PXmnK2aa33umDUiY5Rx60/wC6cn86Zx2p3O3FOwh3VlPanVEuRipM/NzT6AIzU5T8pzRRwKQAvTORRnHWhSO3WjBOADTAXp05zQuN2QadQq96YC0o7elNY4I780oYNz0pAK3TmlycccU0n5c9aVeR6UxCj0HA70fr6Uin8qd3GPXrQDGjBbgU/dxTf4qMjNADt23pzSZINAbqKZkrJ04oETr+lHTNRq/B9M0tA7DmyQcdKP4gTSde/FJu45oESe45NJ3HpSKcUvHfkUCFVeSc0uT0ph475oXLNzwaAJFbbml7Uz8KA21fWgZLnjmkpm8Ng04n3pgL2xThzikBB4pA200iWPb3NC9vWkye1Ge1AiRctn1oHt1pB2OaTd+dO4xxGOpzRuOOKb3pQcd+lMQ7f0pQoJzSHvSqwqQHbe/pQOp4pN1A/WncB1Lim9hmkD9c9KYD6cq5FR7vWlXjHFAD87e9BbcP8Kac55GKPu5FAhV780q+9Mx6dad2zQIcPmpfr+FIvAJ7Ck70DsPP/wCulDdu1J2xSc/h6UCH44yDRz9KYG3DpSMTn2oEPpycVAzHPtUgbuelAD9x5GKVW4waj3Z6dqUc9uaYDix/Cko9M0mfSnYBcUu3PFRqxDZPSn7ifzqQHeWPeinbvaigDyIfmaVcYznFR7RkHvUv3elcp3Dgw2nFIG8zvimdsfnS5UKMfLSAf19Qadk9DUfLd8/XjNKMrxnGOlUgJVG08fnSscYHSo956Dkd6du3jrg0hitzyaFamew605fu+9MQ7inr/wDqNMBz7U5W9eaYFiz/ANcmeuetcX8KGMnhvUn67tYvT/5FNdpbfLMp9+lcV8I1z4RuXHRtTvG6/wDTZqh7mi+FnX8NkdqdwMAcmkyPwpRjPBqzIbn5+GOKkXG30pi8LzyaXfzjB4oAe3GfSk37VHajpnmhhh1xzQDHfdx3pPMBQ9xnFKM/hSbe3rQKwisMEHpTt3rSKPlyOvpSKpFMQ7d83r603r3zSn3PNIT8opoYDvT1YjGOKYmdx9xipAOwOcHvSHYXfuApxYBfxpuB1pH5WgB4bvimblZzjOPSlWk/iPH5UgJOeuKOmDTd3XvQueuetAyXd0HWkXO71oz6dKCOfQ0CEzjJp9R87yCOPWnq35irJHcqSMZ+lO3DqefUUzPcj6UbiM80ASbvm6UBizHHamZ4K9QOlKpOTQA8tu7frSj5Rj060m7v2pTQAlOz8pBH60vC/wCFN4bg8CgBAwbBHIFP547CmKFjQAdBxT9w79aAD7p9vWgthc/lSjBOKRc9/wAKBD1YMAc0rD5hTG+UHA/CnDPX2oGOZfmA60nO0dKN244PSkGTwTk+tArDsHjml57dc0g+9QOGFAx3TGaOdppDzzj6ClOSTzwKAGrnHvSsT0oDcDjmjp1oAUL8vPWhh6GjaAAM570qsAMd6ADb0OaUZP1poI78GlX72OlADttOH3fakXNO7VQhBnIJOafzmmFenFKuDikxD/4hS7e+aavGO9P3Z46UgYgHy5HWlb9aRePejcF5PBzQIUHPU896DnnrTFRU3OByx5pXJHTrVIB+c54pdvbPFIvQcU7PAxSAb7Uq0j/d9KRSOtULqScKOKVab74o3dKQx+3P1prAbsUc8c0nzcce9MA+61Iy7pPwpc8etAb5smgQKu0cU8cUg5pQxK0hhgDkUYz3pGYKDjNGe+DTCw/A9aVaYWx704NxnvQFhxx9Kb/F7Um7k0KwOcjNBI7afXil6D1puaXdmgB2R6cUpPQ9abxRmgB/B74NKM/hTF+9jH409AOlMkcOF+lOH3fem5pc9+lIYvvmlGQeabnOOMGnUDF96Nvfr60n0o3d+1BI5R1paar0D06UCH4+XNOz78Uzdz0o3ZJAoAcG4pRz05NMBNLz1oAeQOtC/XJpnel6N1qgJM+tNIozlqDQAq+1PyMZqJad/WgB3U+1HKt2NMU89OKdnDc8UAPzSc9KTjrinbqCROn1pw/Om0fdoAXGeaXjHNJ+lNzt60AP3eppdx7Uz606gQuccZpeMY701T17Cl3bTTAQrzkUFuadTWbtSAOaKTNFMR5KrFuMYqTd261AreoqXG4deeK5D0LDwecDrSqpKnFR/dwCc0vmMuVxQMerAA8/nTlbPAHBqHlh1zT0yvGSPegkcvze3OKdtO4ZPtTemTS7sD9SKoB3HAxQvbI4pP1pV+71qWAm48jrT17ZppA64Gacrd8dKYFuzP74GuJ+Da7fh7asP47q5b/yM1dpZ5WYMemD/KuL+Dh/4tvppPeS4/8ARz1PU0XwnXry3tjijljlTx3pB8u445FAq0zMX5hjPPcVIOnqajJXk5yf0peeOAKZNx/I7UrMFx3zTGK7SDQG2kHt2pDJfugnrRu6etNHTGaBx0P4UgBu/FIv6UM2GH60FgORzTELt/H196TcT09aXd82KTGSaYxy/Kxyc05fUnvkUwY3e9Kzds5xRuMcrFT9O1G4nI7UinknrR5ny8//AF6QD1Yhfb3oX7xNR+YNwHb1FO9QRQIkBUrnP5UxmOQM8UobK4/KomJLDtQBOF25xTqZu24J5oDhiRTsMfngYpeCMZpv3V560u4Z560AO5X6UjKOx6c0bj0pR2weR2p3ELklcjkin9vamZxmjd0/OmIfzS01T8u7qaOOfWkBJu65NIOe1IB2PpQDjFFxBwZDnp6U7b83Tmm/xD/CnPTAXn86Xc27FJnPNJuO7HagCSgdKbuApcHdnNACg06mr8v0oLd/SgBWz24p23kUzIIyaXdg9KBC52/0NLzxTWYbsDil3YGR0oGPU0HK/lTFb160u/1HFAB1IHtTuuD3pn3lBGBTvu5xQK41x61JxnrTM5WnZ644NAx2T607ryDUOTxT9/A4oEx+48Cl3HNN3etO3cdO1Ah/YUZzz/MVGWPyj0/Ol8wKru33VUsfYCmBJzjikYAMM84qppOqQ61pdtqFtuNtcLvjL8Ej6VZ5I5+lIQ/J2j0pNuTnOeMUqt8uMc0xnOenHfFMCVe1BHPWmenal/nTAe3zIaYnC4zzTuQtMzn/ABoAk5bv+FL74qIybOvfgU7lhwMUAKGz9acuBj+dMZiKVT8ox1piHfxHnNN/iBpdw289aRW9aBj807r2pijIIJ96cKgBf5UfdGM8+lHG0sWCgfgKbgscjniqAXPFKvFNZWRc0g9eppgOycn0pf4sUw/f9KMlvegXUlwBSH25pBnIpdrelIYu4d6XP5VHuVvkDKW9jSLy3ByM0wJwe3WlHfFMA4NKpwOuaCSX8aFAzTcZpQcUAO+6fenZqJjzinr92gB+4DODTfvUlGeuOKCR9L9KjXnNKM/T6U7CH8dKXGPpTV96Qsd2OlICT3FDNyPSoW3evHpSqx9aYEv0NOH5VFu29Kcrbh70wH/z9aXpz3po96cuPSgBN3OKcG3N1qM/K2akVuKAH+nekb5sUgz60FsGgB+2k3AZ9abu5oHNAC7ieabupcdqQxlgaCR3B/izSj9aRVwvTmlDCgdhykc0m30PFJ09qX3A5FBIv40vAHvSbe9Jt2ggfpQA4Nke3pR2FMXscU7jHXpTAXbRTfzop3Fc8jz6dqkXJXJ696iDbl4pQ3TJrh9D0SZWHOfXinBck5NRLk5yfpxTwxVsdqYCjPXofajnI549KQd8cUrcrjINMViRcDPTmjuDna1RqzYXceO1P6nn5h7UCHSfd6c9aXd26j0ozwR+lJw2MUxof0o3bvpSe3elUDbkUwZPC4w7HspPP0Ncd8H1x8NdIx0JmOfrK5rq3wttcn/pk55/3TXM/Cldvwz8PH+/b7hj3Ymsupa+E6rrx0pMDoc5+lC+h6U7/OK0RmNWME9PrzUqxluM5PamA4xWJ4wLztoNkLt7O2urphdPHJ5ZMSxO5G7sMgc0xWNKbULWG5S3kuohOx4jDZJ/AVaWPdgjpWL4Yn0hspoloDaKcNeKh2ufUOeX+tO1W4ki8aeGYQzLBLBd7lHRmCqVz+Bai4GwF2tz37U8qce3UGmzMkMU08vyxRI0hI9AM/0rB8O317qohvdTnS2e5QSQabAQfLjPKlyOrEEH0GaYje27h70CJnBI6CuY8Y+KNS8P+JPDsFlaPf2l1Hcvc20Y/esqBTuT1YAk7e4zWR4g8T3mqSWWsWUF1Z+HdLvoWuJJ4mikuNxKthTghE3Aknr+FFmM772607yW27hVTXNUGj2QuxGJlaaKIY9HcLn9c1mSaUn9pP8A2hrVxdPJKzQ2Ub+WEXPA2rycDuTR6jNwYZiR260rITjOQfSnKgihuChOVhYj1BCk/wBK4/wXd+L5PD+kXt41lrsV5bpM2P3E0ZYA47q3XrxQI7EI24YHtzSNC23cBt9c1z2gXF/eW/iaNJBBdx38kdubgbxFmNCOAegzVO68NWlhNprazeX+sz3tz9n3zTlYg21mz5a4XHGKQzq0VTna6s3cBgaY00MN1BBLPFFPNnyYncBpccnaO+Kda6bbaevl28CQr3CDFcbqulp4w1Dxa4KPeaX5MGmzAfNBNGglJB7biwB9QMUCO3aPDZx0pqkL24qtoWsL4i0Ow1JF2faYldk7q2PmH4HNMj1ZG8RXej+Wd8FpFdGUnqHZlA/8d/WgZfXn/A0BdpyOaRM881m+KLzWtP0dJfD2mR6tqDTqjQySiMLH3bJ/L8aYGpyHBPSl2jPXHpT2UnHG0kZKnsfSo1646Y6U0BIPm/rSc5HbPFKPl6dKD8xpCFb7p9Kcq5xgfhimKex6dqMimIlXC8Dt1FOXHrio+Qe9KrcVIyRsdO/Smhg3A65ppJ+tCgbs+tUSScUsny47+9R7trfypzepNAAG7HinEdRTVb0p/O3imAvXGRTmxxzx60xT7c0vG3igB3GfSk6nim84OefWkVvX8KAH7go570owOKGw2Mc4oGeeKAEYc8UqnGQeh6UuQMZFDelAhAM4/Wn9MjrTFPXjigndj1oGO6CgLyc8CkUjGKcPvUCHrgY9fWm7cNwc0bhn39KXv60ALgdj9KXjpS55FIyjrQMXjIGcY9KgvDcR2xe3USSowJj/ALy555qXdhume1Oz8wHagB2719eaSYf6JdL6xP8AyNJyvvT1XzIpUz95WB/EU0IwvAYC+BfDuO1jEP8Ax3n9a3v4etc/4Abf4D0LtttgpHuCQf5VvKT3/CqJHDqMnFJghqT73QZx0pS24g0gFbOR1o/pR2oApgVNa1q10DS5b+9cpFHgBVGWdicBVHck1YtZjd2sM+ySHzUDeXIuGX2I9a53W4RfePNBs7j5rWO2mu1jPRpFKhT+AJNdRJMY4JpduTGjPyPQZoAb5O5vm9eKlXJ4B/OuM0PSNUvNHttXg1SUandJ5xjuDug55CbR0HPUc1saJqsviC1vdPvIW0/UYgYZ41f7pI4ZWHUHsaANcrgnPSkwFIYnFefeAr7xBZ6TcRysdYFjcyWs0cjfv12ng5P3sjnmuh1rVbfXvD97BA0lvdqm9Y5VMbhl57/TtQBrX2tWNjcRWs1wBdzfchXlj74FXApbbjvXPW+k6RrUMGuTRvHcPArNcRyshwB3wegqG9Z7HS0vYLieOylcReXI5LMGIGQTyOtAGre+KNO0+4MBl+03g6W9uN7/AJCp9NvNRvXMtxZiyt8fKjtukJ9wOBVVvDNrY6BdWmmRfZZXQsJlJ8wt1yW6mrXh3Uf7S0m2mY4lKAOM8hhwaVgOZ8a3Emra3DojTGGyjtJL66aM4OAcIufc5P4Vs/2lJY+DZLxi0UkVmXyx5B2/zrg/ESP4V+Itw98ZZdK1iBE+1bS4hCMSUOBwDmvSoJLDXrBoo5Ybq1lTZ+7YEEYqtBHH6Bcat4Z0rT7+81GTWtJu40eaabBltmYA5z3Tn8K67WtcTRLGO9KGaHzER3U52Kx+8fauM8HLrF9oz6DbpbxafYzS2c13cHc20Mdqqnf5ccmtnQtFFmNQ8P3csl1BJHmGSX+4Rjb+FAinqXibxFY+L7q2t7W31HTY4EnWCPKTlT3XPDcj26itzS/E1nr0E0EErW19sI8iZdkiNjuD/SuX02HUr4aJeRW0jX2k3DWFxIePMiIwT7jhTXdX2jWGqH/S7ZHcdJBww/Ec0AYNnq2tajpdlDp8MJu23JcXU5+SFlODx1JNVjpF3N4gFlq2sXdwjQiVPIbyUY5IIwOeOO/erFusHg7xBcRM0i2N4qvCDlv3nQj8eD+daniWxe6sY72BW+1WbeYo6Fh3H5VIGd4g0i9tYYYNFtmW2Zs3UkLAzlfQE+taOg6hZPEbG2WWKWFRvimB8xf96pvDmrnWrNbzy2iiLbYw3BYA9TXNa1eRaPq13NcMYbwTq8Df89o2wCo9fpTA7G5kkgs5pIk8yZEJVPU1DpWof2jbljC8LLwwdSOcdqsxSEqpIxkdxVfTpryZZftapH8xC7ehHrSAu7uPSjNNHr+FO7ehoAX0waXo2c0zb0p/amIVm9KaXPQ0qk89xSH6fpQIdzj3pR3psZKj2p/HPNAx3px9aTOc55o4GaTjnnmgQvFB28YoFG7pxVCD8aUN2700saI+TnrQA+n570wc9KXB3DmgBSOeOlPDBeD1qLfhsDtTu9AD93PFGc0in86WgBePrSgflTN1Lu7UCHdPalBNIR0NJkKaAHgY6nrTT94UHNJkfWgB31pd2FqPGfpQMjvQIm9Dmk3fnTN3Tmjn8aAFVio/nTs9qjGd3pTlznNADst6UUcUUBY8g+6e1Ksm454IFSvGD/8AqqHy9rEgckc4rj2O8mX5c55NKeBxzUK565zinKxLZzwKLgThvl59aAvIH41GudwxSrkH2HrVATBfwpRTd3QYp69/SkANjGce1C544pG7gikVsDJzTAeAB2yaFyG5H60xW+bH86dgbgehp3FuLM22zvD6QOc/8BNc/wDC/K/DXw18p5sYz+db14wXSdQbPK2sh+vymsP4Ysw+GnhbK9dOhP6Zqepp9k6MdulO2njmm7uKUZ7jr6VZkSI2cf4VzXxG09rqw0m6/smfXba1uT9r0+3XdJLC6MjbRkZxuB/CulUEgADmudufiVo1jdTWzLqU8kDFHe2sJZUBHuBTEMt/HReOGK18G+JkiVQqK1gsaIB0HLAAVoeINIutcttPnsLn+y9Ts5fPgkuI94XIIZGUHpgkcGsxvi94ZXma61CA/wDTXS7j/wCIqIfGDwixyNRum9Sum3J/9p0DNaDS9duLO+t9U1SxmFxA8SraWpj2llIySWNY/hWTUNFsbbTf+ERuLa6jjWKS8WZDDKVGN+7O7nHTHGaWP4u+FGyYbrUbj/rlpdwT/wCgVOvxS0l87NL8RzAnOU0Wf9OKBGrrXh465feH70zi2udKu/tKlOcgqVdPoc/pWpdKl9bzW1yomgmUo6t/ED1rlpfilpEON2keJEY9m0Wf/Coz8VNJHJ0nxEo7FtGmH9KYzQ/4Q+L/AIR+70v+0bp0kQLDJcPvMGOU2/Qgdap6bo3iazuJZinh0zytmW/W3kE0vuwB6/jTV+KGhyYAtdaDddraTPn/ANBpy/EzS84XTdfl/wBzSJ//AImkB1Nv5nkbLh0eZkKSPGu1TkY4Bz61Boumx6Do9jp1uzPDaQrCrP1IFYUfxE09zkaL4kJ9P7Gm/wAKVviRpq5A0bxJu9P7Hm/wqUI04tHuLXWrq8tr4RW144lntmjDHeFC5B7cKKi8ZabNrHhuVLT/AI/bWaK7g56vGwbH4jI/Gs1/ibYcY0TxIx9P7IlH9Kn/AOE8t1XP/CP+IPm5GLEj9M0wOh0nU11WCK5EUsBfGY50KMD6c1yfh/8AtDwvJrzx6Hd382oazPPCsBUDy9qAM7EgAHB/Kra+PZ5T+58IeI7gDubdE/8AQnFP/wCEr8S3C7rTwPd4/wCn2/hhI/AFqAKvgN76yutX0a9jjtGt52uI4FbefLlJcYbjgHI6dql8S3sfhfxhpGs3TGHTby3bTbqZvuRPuDRFj2Gdw/GmTR+OLq4+1Lo3h3Tp9gTzpbuSaTb12nCgH86kl03xrfWclveXvhmW2mG2SCTT5ZAR+L00gOnWMth1YMh6MpBFVtUtbq/02e3tL1tNunGFuVQMUP0NcVpXw51rRJjLYXvh+1bOQI9Nfg+2ZOK2m0vxuSA3iHRlT1XTm3f+h0DN/Tbe4s9NtoLq7a/uY0xJcMoUyH1wKnZSozjiucbQ/F0mAfF1rD6+Tpi8/wDfTGpY/D/iFcGTxjI3qEsYV/pSA6FV9DwelNcHbkcc81g/8IzrgbjxjdAdv9DhP/stEnh/xInKeMWx/t6dEf5UAb/1Bp20nHpjrWB/Zvi1GG3xJp8vH/LXTsH9Ho/s/wAYN013SF/7hz//ABdAkdEIyvHJFJg7j3+lc9/ZPjBWz/wkunEen9m9P/H6b9h8bR/d1vRZgP8Anrp7qf0enewzo+eh/Cl44NYDJ4xUAquh3Tf70kef50xb/wAZRDEnh7TLjH/PvqJH/oSUyToW+bjuKcfmXn865r+3PFYYf8UfHjpxqaZ/9BqT+2/FRk58IovH3v7TTH/oNMLHRJjPpTsHAIrnf7a8ShP+RRO8H7o1GLH5/wD1qd/wkXiAZLeDrof7l5Cx/nSEdBk/XjNLux054rm4/EmuNJhfB16oPeS7hH/s1K2ueKWY7PBgHu+qR4P5CmB0J3HGDin574z7Vzaal4tkUf8AFM2UR/uvqQP8lqU6p4qXr4XtGx2XUwD+qUAdBj170DLZNYP9teJmx/xSkIPp/aa//EU86l4qZSF8MWUZP/PbU+P0SkM3dv5etLtOPeud87xozYGn6FbDt/pUkh/9BFL9n8ayAf6ZoNuT/D9nlk/9mFAG/wA9ME03DKw9KwV03xfJw+vaVC3dotPY4+mXpF8PeJmz53jI467YdOiX9TmgLHR+WW7GneSwx1zXPL4X1VmBl8Yam3/XOKFf/ZKcnhO4bPm+JNWk996D+S0xHQKm5vu59TT2U84H41zv/CFk8jxDrH/f5f8ACnJ4PlVjt8S6wM+siH/2WgDoPLbaMjrS7DkjHHSsD/hDX4z4j1Zj6+Yo/wDZaP8AhESq4bxBqze/mL/8TQCN/wAs56ZpBE27isNfCWCc67qx/wC2w/wo/wCEMSQN/wATvVc/9d8Y/SgDe2tjpz1p8KmNwSOvFc9/whcbYA1rVuOh88f4UJ4NK4xr+rLg54lXP8qZIeC/3Wm3+n9JNPv5oGHoGbzFH/fLiugWJ+uM4rgdF8GxJ4o8UwHWtWQ+ZBMWjnA8wtHjceOvygfhW8vge2Kkvq+ruT/09kf0psR0Pktuo8tuPWuch+H9hED/AMTTWCc9Tfuf5mpj4Ht/+gzrA/7ej/hQBv7CxwBmnLCd3IOPpXN/8ILZNkvqusPng/6c6/yxUf8AwrrTH+/f6w4/u/2lNj/0KgDW1zw+NYFvKkr2d7bNuhuYwCVz1BB6g+lMg07WfLdbvUbaWNgVPl2xVsH/AIEazR8N9B3Nk6i+f72oz/8AxVIvw20GPG0X49v7Qm/+KpAT2dnrmh20dlbW9veW8Q2xTSTbCF7AjB6VoaLo89nPcXl5Ikt/c7RJ5Qwqqo+VR64rLb4c6D/CL9T7X83/AMVS/wDCudC+8P7Q47fb5uf/AB6qA09M8PppWsatfRzEDUHSV4cYCuFCk598VosFfJkKkdMnGa55fh5oDAqYrwjPJN7Nn891Kfh14cXH+gsx9Xnck/Uk80APs9CjtbC7sZL9DayBkhVML5anPr1IzVaz8Lp9qhm1PWm1JLf/AFFuxVI1I6EgdT9at/8ACBeG9oB0iE/7wJo/4QLwy3H9jWo+i0AbX2uDfn7RHn03D/Gq9ppVhFdNcwAeYxydsmVB+mazG8A+GmwP7It/qAf8aY/w38LSOCdLRGxz5bsv8jQLqdDeSW1rCZbqSGKLpvmIA/WuTh1DwVaasbq01nTLS8XPmLb3iAN/vKDUzfCvwnOm2bSxMmc+XLIzD9TTv+FU+DY1wugWez0KZpDEj8ceDrBpzDrWmo0zmSTyJgSzdycZ5qwPHugth4rl5yOkkNu7fqFrSsdF03SbZIbHT7e3jThQkYH9KvrJs+6qrx6CmBz58dacw+SG+buSllIc/wDjtKvi+JuU0zU5PpaP/UVvecc+ntSrK3rg0EmA3ieaTBXw9qc2DwxiUY/76bNPXxHqLkgeHb8cYy7IP/Zq3mkb+9k/XigSHHXFIdjDGs6nswPD069BtEqACoZdV1GRgZPDM0u37rPJGcfTmt9pi3fIpPMYLmgRgHxJqC8P4c1BR/smMj/0Knw+J25EmjahDju0YP8AI1ttI2Ac0bj9aYGQfF1qq/NZ3y/9uzH+lH/CZWPXyLwDPe1f/CthZCD04+lTeccdqAMH/hN9L3fN9pTH962cf0pw8baUScPMwP8Adt3/AMK29wY5IU/hS7l7Iue/Ap2FqYX/AAm2mLwBdH/t3f8AwpH8aWTcJbX0nutq/wDhW/uH9xfypysSvtRYDnf+E2hHC6ZqJ/7dmp6+MrbgyWN9EPU2z/4V0CyMOhxT1lbmkCMJfGmlbcvJJD7yxMo/UU6PxhocsgVdTtst0XzAK2W2ScPGrfgKgksbOTKvZwsPeMU7AQDXtO5/02DHb5xSf27pw/5fYff5xSP4d0mRstpttn/cFN/4RjRdv/INt8f9cxTJJP7YsW5W7hx/vip4LyK6XMEiyr3ZDmqMng7QJPvaXbEHqQmKt6bo9lotuYbGAQRZzsWkwLQz1707mkz6805fUjNIdgA9aMH1pOT9KUE0AC544p1JkduDSfWqEKaFFC/XiloAXnvS/TjikzzxSr+tACZ/EUcHpQaBwfSgA70HPcfSkZjxincnrzQSIOeKdz9ab3pyn8KBgWxnNOXim7j35o79KWoIfRTeaKLjPLPoelNYDBzTt25cjpS7VwT1rmOxFZmK/L6dCKcucAY96k25XjBNR7tmcj8KjqUP9O3c05TzzUKuGkPtUnG3jrVDZJx3HTpTo3H49qjA4605V+ZuRSRJImOQefrSMp45pq4AGOacrDnPApgI3yMDinjntkGk/XNIG7DjFMCHXpDF4X1mQHBSzmI/74NUfAICfD/w4oHyixix/wB8ineMJ2h8D+I3BVWXTrhgSOBiM9aXwYPJ8F6ChG0Cwhx/3xU9TT7Js4POOKRWxx2HahT8ue3enrhlzn8asxAEZVgff6VP9sddoVjgVXAAGAcU4ZVTz+FMktfbpuQJDgnpTvt0/HzMfpVZU3KWyFwOSTgYrg/FHxS0COzAsNWY3NveQ/OsL+RKvmASIJcbScE9+1FrjOrvvGI0/wAWaTojbpJ9QjlkLK4/dBQMFh6HkZ9q2PtU24/vGHrzWXrGpW+jX2nNNApN7cizFwFGUJBKgnrjIx+NX5NqK7ORGiglmbgADuaAsS/a5ecSMPoaRrybaP3jEfU1XVlZVkRg6MNysvIIPQinbix4pgTm7m/vkDPrS/aZOfmYD61VO5mwCAtS5G3hqQyX7VJvBDtx705rybqHYH6mq+cZ/wA5py8A45FUhD/tUjDG4/nSRzyLnDseab6VkeMLy80rwrqOoaeyrc2iCc713Bo1YF1+pXNMDc+0yPjLMKN25sg801mSbZKhzHIA6kdwRkUbRuOOKkYrMehNNViV+tLuAU9h1pFy3BIoEP449R0NAz+NM2/MCvJp2Dxke1IAbduI65pY/lPPSl3bT6mj8PzoGOVj9acTxxmmqu7OetIuVHWmAqgBXc5KopZvoBk1U0bWLfX9CsNVtt4t7yJZow4wwBHetCFTLvQceYjJz7giuQ+FdyLn4c6FGB+8sYjYyr3V42KMP0z+NAjqtx3HPXtTLy8t9NtkmvbmO2ieRYkeRsbnY4Cj1JNYesa5rLa5Jofh7T7Wa9itY7q4v9RmKwW6yMyp8i/M7fIxxx0o0vwfFa6gmrazey+INbXhLi4XbDb57QxD5U/3uT70+gzodvz7c/iKXcTjJJpNwYbu9KrYzQIfu+f604SHp36VHt+bPWnjvjrQDFVWlbADEnpiqVrr+mX+oT6faalb3V9b582GOQF0wcHIHoeKzPFt7PNd6b4csZjb3mrF2muIzh4LWPHmup7MdyqD2LZ7VHqFpY6b4g8IaVpttHaCBp5dkSgbYBFtOfXLFOT1IzQKx0e8rwep96GY8Y6VlWuvfbPF2s6H5AUada204mB++ZC+R+G0fnWoo7Y70xD1b05FOjkYZ3HmmLxwAMA96f1oAcG75pQxxnNNHv0pJGSNo42kVZZAxjjJ5bHXA74oAJD8wycN2pSdrc9cVHcSxWdvLc3MqQW8Q3ySyMFVR6kmqek6tHrVmLuKGSO1ZiIWkXaZV/vgHkA9vXrSuBfDbvbikLH1/Gs7xFr1h4T0O51fVJmgsLYr5siIX27mCg4HOMsKt6ff2urWUd5Y3UN7ayDKzQOHUgj1FIaLG7PBp2e/tWc2sQjxMuieW3ntYm/Ev8O0SbNv1yavKxyMCmDJd23FLuyc+lU9U1jT9Et1m1K/t7GJuA1xIEz9M1ZDfdYHIIyMelMROsTnAVcj1Ap32WXGdhIrn/EXg/TfFkkD6hPqKCJdois72SBWGc/MFIzVKH4U+F0ZUFte4X11K4/nvpok6dlKuA/enLw1ct4Nhl0vUvEeiSTSyw2V0s1n58hkZbeRAQu4kkgMG610+efQ0D6Eme1Pj+Yjn8KhDdcCp0P3frzQSYWmfN4x8RNjIEVqDz3w5ra+nFYHh2QyeKvGLH7sd1BCp+kCk/q1dByf5UAO2/KD3o5HFNXr3+lV9YvpNJ0q5v0t3u/JXe0SHDbR94j1wMnHtSAtEbvakXrnOM1HFcR3cEU8LB4pVDqyngg81W1jV7XQbGO5uy2ySeO3QRrlmZ2CgAfj+WaYF5uhoU5Xkc0j/LxikX7x7igB3VcUuPzoEbHtSt8pwSvHuBTAFyR3zS85z+dNjPPPHeqN1rn2DXI7G8h8i3uRi1ut2UkbHKH0b0z1oA0d2760DDdOtKq/Nt9ao6XrFvq8l8sG4fY7hraRm6F1AJA9cZ/PNAGhwO2DSHA5HrSc0fjTAcDxzSk8UNhiecEVV1LVbXR44ZLt2jSWQRhtpKqT0yew9zSYFnnpSZC0bh25HZvWqF7q8drrmn6WYnea8ikmEi/dRUKgk/iwoAvfxdKdnA96bhVVmZgiryWY8Y96jt7qG8j8y2mSaPONyMGH5igCf9aa3T2pF9KeFLUwGj2oJ28E5NIrIwOxlcA4+U5Gax/EutTaNdaHDDGjC/uzbuX/AIRsZs/+O0CNdW9RxSnnpSfeJ6Y9KF9+KAY4ZXj+dOAPFAyT1pN3XmgQ4H86kPeozj9acPrzTuA/t1o5+lNXPNIx4yOlFxEmccCncmow3T0p+4cUgHd/ekZs5wKNwpMigQLkml5xyM0mQvvS7h6U7gLuJpv0peDSZ7DikMdu29s07dTevek59aBkm78KN3Q0wfr1pWbmgTDJp27dUefXpTt3pVEj8/nScjApob1+tG7mgCQNxQrexzTR8vfJpFalYCUHIB6GlyKiBx34pc9KAFOaTOPekLDGaRW3YPQUxD93qMU4EZ4pm7FJ93nrQMlzQW/GmDNJu+YDoKAJM0U3cPf9aKQHmA7jFLwqkDGacchjx19qavTPArmOwTbwTjFMZfz9KdyOTz70Hnk8UiiJAFzjpStId4Gc/WpGUc81Ew47Z9aCiTv7VIp7gc96hVhtGeBTz+HtSEOxhcjr3FKpLYNNPzc0cdVPNUSPLFec9+KFx175pVw5/CmJj5vl56DNAGT8QGx8PPFJU5ZdMuDjt/qzV7wyuzwroi5yBYwD/wAcFZfxGcQfDLxWxyF/sydfflSK2NDXb4f0lRjizhH/AI4Kk0+yXlYHilwRwDimLkcHj2qTcOvWrRkxdv50oYqOeMUK2cdcU5sfnTEU9c0/+3NB1PTVkET3ltJCr+hZSAa5j/hJ9JbwqfDet6PqWiq1qbN7QabJLD93bujdFKkZ5HfpXaRnawHP51hp4VuFJQ+LPEJhbpGl2Fx7AgZpiLEugjxD4QXTpri4LNFHsvJITHIJEwVk2HocgHFSaFpWttDdJr9xbXM91GYvJtIisSLtK55OSTnJrDPgfRZdSktZtY8QXN6sKzlZNVm+4xIB4I7g1LH8O9H8xkTUdaWRfvKusTFlz043cVI9ip4Y8Z6Bo/huw07VddsdP1LT4/slxa3cwjkV0JX7p5wQM11dpcW+oW6XNpMk9vINySRnKkeorm/+FZ6R5/ni/wBW+0Z4mnuxO4+hdSa0rXw3qFndQSr4s1Ke2jOWtbqOFldfTIQEfhTA2MHp3rN1DxZ4f0eUx6hr+m2Mq/ejnukVh/wHOa1lciQEcc5rOvNNt7GGW80zw9pd7qbPvIkjjiaQk8kybSc0kxD9J17TNehafTL6K/hBx5kWdv5kVerHtb7xLdSKbjQNP06Lpg6h5rD6BUx+ta53LnNWgFVdzADrUWpTafYWE66reWtnaSo0chuZljBVhg9T71PGSrBh1rIj8G+H7a7u9RGi2t1eSM8rzXMYmkJPzHBfOPw6UxGN4V8TaXpehw2Da3Hr0dp+5t7jTbSWY+UPuByqkFgOCRXT2OoxX8ZeJLhEX/nvC0Z/JgKj8N6+Na8OaZqVvH9niu4FmESYAQHtxV5j5hySTxUsY5cNjJyDXPweKmh8WXHh/V7RdNuZiZNKuQxaC/iAGVDHpKvdD9RW+CM8cVT17QdP8VaPJpupRs8LEPHIjbZYJBysiMOVYHv/ADzSA07GMtfRxMv3mArnfAOoXOpeC9MubyVri4m81vOb+JfOcKf++QtZcfxAl+HtreweLpka/wBNtpLqz1HASPVI0UkAdlm4AKZ75HWrmm3kXgH4Z6LLfRyMLOytIp1Tkh32KzfQMxJ9qYI6Q/e9OM1T1i71KxtYm0vS11aZpNrxvcCHauD82SDnnHHvWlNbNDMwJyVNIjKp5pDMKPVfFMuM+G7SHP8Ae1EH+S1pRS6m1lMz2tpHfgHyofNZkY+jNt4/KsyfTfE091KY/EFha2xcmONdP3sF7AkvyfetfT4byG12X9xFdzqf9bFH5YYe65OKBdDJjbxrO2ZW0DT+42rLO381zTbfR9fXO7XLSMFi5js9NWJSSckn5ickmruoX1zZ+LNEtg2bDULe5RowOksexlbPurN+VXlG2Qknv3qkBjWbGP4i6yrEb7jRrKTIGPuSTK3H1I/OpZNeaz8ULpGoxLbx3yiTTLofcuGA/eQse0g6gdwfaortRb/EfTJiebvR57YehKSo/wD7Mava5olr4o0W40y9LIjkPFNH9+CVTlJUPZlIz78joaYiouoXTePW01XxYwaKt1JHjjzZJyqH67Uetsqyj7vauO03SfE9rZ+KNR1HUdOsvEF4sMEGorH5kMUEEYUSFDjGWaV9vYsOoFSeEbO+8F2umaNqkkOpRXryeVq0cjhprgqZG8xHYkbgGOVOOMYFIo7S3t5JlLIhYe1O8iWPlkZT06Vz2s+DdC8SXSXGp2L3NwibFZbmWLA+iOB3pdN8F6Pol1DcWP2+BoukTahNLEc+quxBpksz9YlWz+MnhCSQbRqWl32neYem8GOZRn1+Rqf4FuE8U/bvFqyCVL92tbVVYN5NvExVQfQswLEe4rZ1fRrXXjpbXBkim069jvreWLAYOueOexBIP1qjqvgfT7q6N/pLHw/rA5S6sfkjc+kkf3XB75GfekM1nvLS21OC3by0v76NihCAPKsYGcnvjcOvrU5DYOB05rE1fTdU1LTdHvxDb/2/pc/2gQxyFYpwQVkjDEfKGU5GehxVLxJfa5Y/D/UNTnaKz1SKRLpobdg6wRCVSY938WEzk+5pgjqoyTxgk5qZlWMfPNGg/wBqQD+tLIrwy7wm0Zyp7EdjXNx/DzweJpJG8L6ZLNKzO0k0AkLMTnOWz61NxWN5LiKVisM8c5A+YRuGI/I1y3xK1KLw1a6D4pnilmj0e+xOluu6RoZkMRCjudzIfwrb0/w7ouhSSS6ZpNpp0si7XNtEEyPTim+K9HPibwvqGmgqJJlVoi3QOjBlJ/FRVCOK0FtR+IXiLVT4ssX0q00qSI2vhmRgwYOu5Z7gg4c9gvRSCDzXocjNIwOMjt7Vh+KrK+tdWtfE+lWxvr23iNvfWSH5rq3PJ2Z/jQ8j15HpVe48eWE2mx6hpcyX0UMga9tcETxQ8hiU6grwSPQGgNzY1zQz4l8N6lpYk8p7yBkjlGfkfqrfUMAfwrk/C+kweKNDtPEWiyt4Z19y8GoLAoME1zGxSUSxdDlgTkYPzV0Gh6wb/wAeeI4oLkT2FtYadJFtbchaXzmLA+6hP0p/hrw3J4al16MMhsr7UXv7dFyTGZFXzAf+Bgn8aBmRbtqkfxN0ptWS1Sa40Oe3RrRmKSFJkYnBGV4bpz9a7ONtuXxu2qTt9cDpWN4g0e71C90O/wBPaFbzTpnLCYkK8LrtdcgHnofwFMmt/Fz6lM9vqejWdjvPlK1nJLLt9zuAz+FIDl7Kxhvvhlq3ivUANR1nU9NuJGmlG8WyspAhiHRQvfvnOTXeWEBtdLsYHbc0dvGhY9yFAP8AKuZ034dyWMOrwS+Iri4s9UjlWaxWBEt0d+rxr1TnnAODzVzT9P8AF9nIsU+raTqNsoCiR7V45cD1w2PypgdIVKqOPanp1A/Wudjvrux8dy6dcSmWz1G0+12hI/1bx4WRB7HIb8TW+Aex59KaEc/qedN+ImlXIbbDqtnJaSehkjO9P031v7SuQRzWD8RLd/8AhG01KMHztJuYr4YH8Kn5/wDxwtW+2JNrp91wGH4ihgSL05p8P+sH1qMKAox196kiILr9aESc34SIfVvGL9/7W257cQRV0S5+veub8Ejdd+L2yDnXJV+mIo66RfloEPU+ozUkR28Ngg9R6iotxU/WnrhfekBylpN/wg2qjS7t9uhXshOn3TfcgcnmBj2BJyp/CpfF0bSeL/AdmwJQ3tzdumOgigbax+jOK6G+tbXUrGW0vbeO6tJRh4pFyCKxdD8F2egamL6K+vr1o7c2trHeTeYttEW3MqEjPJA5JJwAKoDVkvIo7uO0edRdSo0kcR+8yrjJ/DI/OpV/lzWD4lsb+PWNH1vTrI6nLZLNBLapIqO8cm3JUnjIKjrU9r4meaREutB1bTpGOB50IdR+KMRS2GVPElrptvfC51G91p1nGEtbJpTEuBjpGM/magsbrwoHTZHdRydnu0uF/MvXXBmjYhWNBkZg247x6MMigQzcrYZGyhGRjkU3UNNt9b0+WxvE8yGT04KkchgexB5Bp3GOBipB370IDB0vXn8Nzf2Z4gmGY1ZrXUXwEukUE4Y9FkAHI79R3FVvhjbn/hDbO8l3CXVJJdQkJ4OZXLjP0BH5V0eoWdrrFjLZ39ul1bSDDRyKGB/CnLHHZwxwwIIoo1CRqowFA4AqgOSvvFGr2XiJpdQ0u+0/w3bMIoZoYlma7kbgFgCWVcngAZ+nSur02+t9VgW5t3zE2Rg8EexHY+xqrrmn3GsaciWk6W93DMlxDJKpZNynowBHGOKboemXenLeT6hdx3d9dSeY/wBni8qJcKAAq/h1PJpARXE3iW4upI7W10+ztQ2FuJ5mkcj12AD+dXrfS5ZrGe11a4j1FJl2yJ5QRNvsOatBuBk8U5T680Ac1Z3kvg25j0/U53l0uZsWeoScheeIpD6+hPXHrReTrN8UrC3X5mt9Ilkkx23yrj89prpZo4bqCSC5iSa3kG145ACpH0rM0Pwxpfhua4ksIGjkuMb3eRnbA6KCTwoycAcUAY/ipDrHirRvD87OumXEMt1cIrY88oVAiJ9PmyR3xWhpNrBb67qyWMKQ2kXlx+XCu1Q4Xnj1xt/KreraImrXWmXIna1uLCfzY5FGcgjDIfYisqTwTNYyTT6Prl5ZzyyGZo7lhNC7HrkEZH4GjQDoixWF3WNpmUZEa4yx9Oay7XUNcvGUjRorKP8Ai+03ALY+ig/zrSg8+O3jE7K8+PnaPhc98VIxLDrmmK5z15YnwrO+o2ik6dKc3dsuSIiesiD09R+NUvGl1Fe6p4FjgcP52qGZSjdVWByenbkV2EbDaQcEEcg1i2/grSLXWoNUjWYXEAcQxNITFFv+8VXoCfamI2JI9uOOvT3puOoxisXxHFLZ6/o1/C00izO1pNGuSgUgsrkdsEY/Gtvbz71JQ5QBS/TmmjG3nrSc7jg4FAiTGetLTc8Uo9KYh3HpS7c0z8cH1pfoMigB68iimj5elLnPQ0APUdOPxo27uTwaYue5pe/vQA+mscLx3pd3Sk7UAO7AHFIOlNU+vNLmgB1L9KYOe9Lu/GgQ/d3NJznOKM/40n40CuG4A4NLn8KbmlVs07iHY7Udxnr7Um31NGMUhjj9707UL82cCmq3HrShuf8ACmIXaTjinLkdab+OKXPGaAHfhTFbrS7sikX65pgPyfSimbgo605eg9aQBuIOKP5U3r796A2O9DAXd/nNFG4+lFIDzjnFR7jzjjHFTtjtUZrnOwYOQT3pdvaj6dKCMMT3pMqw3GWGTTWXPQ4pxbkZo5bIHepHYjRTu46dqBnceMe9PGduOvrRj5cdD3qhgWMakEf/AF6FYMoK1Eu7cdwJHapPamKw/nce9Py2M96YrHpgYFHUnb1pEnP/ABQbb8L/ABXuGf8AiXyDH1re0xTHpOnL0AtYuP8AgArnPiy3l/CjxWxGQLIg492ArqbVSun2ik7sQxjP/ARU9TR/ASKu4A0rNt5zzSBxu9M0nBI55qzIn3cAgcCnfeqBZAeO/pmpA2FAHHqaoRJ7ZrM8QahPY29jDavHBcXtylqJ5BkR5BJOD1OAcD1IrRZtrdttVdV0ux17TZtP1GH7Ray4JUMVZWByGVhypB5BFAGBNpmsaP480u+muZdXsLm1ksJZPs4WSA5DqX28FcgjOO9UfETXOk+OkS3u4dMtfEEcanUZxnZNFkeWmfl3urcZ4+U9a27fwpJDH5cnifxBd2y8JDPcpgD0LqgY/ia1buztL2yNneW0d3aNjdDOA6kjp17+9ACwabHZKMtJNKBzNM25m9/T8qs5OODVTTdPsNJtjFYQLbRA7ti5xn86sqeODSYDt2SMClJprc9Dg0ZPegQ9W7E5NJ/ETmo+e46U/JOKYD9w5HQ0qSBXGVyvQ8dRTQfm9Saf19M0xHH6O2veD7P+xY/CV1rdnbyOLO8s7uCOMwliyqwdgQVzjp2roNMvNWuJD/aGjwaZDj5Qt6s7/QgKAPwJrRaQ4xnFMb1/rSKH7QenT+VLzkVEu7IO75acGzkd6YDNU0+x1uxNpqdnBf2pYN5NzGHTcDkHB70X0NrrFld6deRma2uo2hlQcfKR2PY+npUm8bTnrQuc5xx9KBGTpXhi9068hnufFutaukA2xWt0YlTGMDftUFzjuTW633jTGcLz2FN8wM2KQEpA4xxTTIVIzScjOOcmlx0JPFMDP8RaVqWpf2bdaTd2ttqGmyySRLeoXhlV02MrbTkdiCPSm6be6604i1bRbWBCMfatPvfOjJ91ZVYZ/GtMsF6UzzDz+fWmCMzxNpt1erpt9p6Ca+0q589bdm2/aI2Uq8YJ6Eg5GeMik0/xMmoXyWl1pOp6LdSZ2LfRDZIQOQrqSpI54rVjO1eO/rS+ZuXDdeo3c/lTGKwWSOSGdFljkUo6OMhlIwQfwrH0nwfp2k3kd35t7qFzApjtX1C5aYWkZGNkQPCjAAzyeOtbHGT6UmRuHcfSlcBwG3p+NSeg/Ko1YZP86Xqwzn2pdRDz2NOA6c1E3IoB7Zqhkw9z9aZcWkF/Z3FpcoJbe4QxyLnqpGDShvUEUbivQc1IjI0nwbY6DOs1je6ohz86XF9JOj+xDk4/DFbO4/TntSFumBTQ3mK2M9eTTESbjt5/WkDbf8abuKgDJ/Ggt3BpgPjYxurA4J9KmjkWNi4RQzcMQoBP1qt14bOKe3akMy/DnhPSvCP9p/2VbfZxqE4uJVzkAhcBVHZRzgds1rFsj8OtIuD2NL/SkMVc7RSbT19KQMRkUm7t196YEin8s8VJExVwTz7VX8zbjC5p+49RzTJMK18J39v4ot9Rm1o3em2fnfZLOSEeZH5gAZTJn5lGOMjjPtW/MrTQypHO1tIw4lVQxX3weKTJOOOKUgnp0oQjl9Y8E+IdatZrSbxzcrYXCNFNClhCpZCMEbsZHHpXUW9utpawWyMzpBGsQZupCjAJ9+KXe3TGR0FOBJU4FADwxHUcVNb/AOsTHqKgGdvB5qa1Zo5CSOF+b8qZJzXgZR9g1i5Bz9p1e6fd67X2f+y10XfPeuY+GchufAem3RGDePPdEem+Z2/rXTdegx+FIB/H60Z2sM9KaG9aX36mgdhzc5zTAx9PwpCzcd/am4YZ70wH7tuO2ad5jKCSc5qH1zRzzSAl3d/1pFzz701W4oG4n1FAtyVeuTTlOfrUQcjjqcU/mgRKpO3FMb73HIpMnv0pW9qYACQpxRk8Y696T3701h0OcUwJwTilXjg1EAQetO9KkB/4cUmO1HpzSEe/507gO6cYo3dR1pjDdTfTmgCQ80ijgihfrmlLANjNO4Dl49valPTHNN5+o/Wjd78UwFDMo4PXtmmH5WyaXb1IJppY80C2F3U/71RIO+MCngd8nAoGO3fL2PtSbjxQw3d6MY75FArDt3TPBp+flAqHaD82e1OU+vNAEo/KjJ59Kjzj1pw6f/XpDHe3Sm78NSLwPWjhuRTJHZ70F8elIfSo8daAJVye9GfXrTV+Y04Y6+9ADlOaWmcDkUuRtGKABs8UuaY3ytnPFH507E2JMjseaX0FMApchaQxwbHHWk3bu/FNZvm4pu0HkdaaEPDY96erepxUSrj/AApqt83sKYifP/1qA1MpcdDQA4keuaUN83TBqPAo3DpjNAEjc96RZKZxyKABxQBJu3fSjjNNyOmKX0NSA7mim8e9FAHnxbg45pGHQZpEYjIP86Xp/jXOdpG+dvHWhj0zzT2bjI69qiZd3PUdaljuG4NQW2//AFqacryPSkDjoRzSAcPlYfypWIK4o60nXBoGNUbTzx7g0c8Ddz60KCH5OeOBTwo3ZPXvTuA35gwz0705cckdP1o6DrkdetJu9uKYHM/F3K/CXxPn+K2Ven/TRa64RiOOADjEajb/AMBFcf8AF0hfhX4iHIJjjGPrKtdm3+rQ/wCyvP4CpW5cvhRGqjqacACM9uxpGO32o56dhVmQo+Y5I59aerbsEjHFRjHr1NO45/SqJJR83bNAUdSMYqONh0Y806SaK1t57i5kEMEKNI8jfdVQMkn8BQBII/lOAB6ik2ZODiuG0XxNFffEkSJZalYWes6WPssmoRiNLp4myGiGSRlGPBAPGa7q3zJOqY74PegQvkoqqp2gtyq55OOp/UUzbsfP4V5rMTea9qHjO5lk83Q9fbSiu8iOOxCqrfL0yWfeWPpXqEtu24EDK9c9sdjQMavfA6UcdGHtR93GDkHjIpeCuDQAL70DAJOOtIMdad6AcUAOGO3FP4xkGmL1I49qduCjOaAIprq3hube2kuI0nuAzQwk/M4XG4gd8ZFPyd3IxXL/ABGjNjb6H4ijj3tod8JZmUZP2eQFJfyBB/CuoVkmxLGweKQB1bPBB5BqgH7Rt4600D2xS5O3OabNJFDDJNPNHbwRjc8srBVUepJ6VIEgAOeKcpGcfyrlG+LHg5ZDFDrQv5f7mnwSXOfYFFI/WrNt4smv2BsvDOszQt/y2uYktxj1w7A/pQB0HTIBz65pQvfGBSKAxJ5APOD1HtSrg8ZxQIevr2pdpOSOvpScYwK5f4matf6D4Xt9Vsbj7OLPULaS6XaCZYDIFdPbIb9KYHTZPA9DTDxkjkVS8W6t/wAI3ps13HD9qunlW3tbfOPOmcgKue3qfYGr6K6xR+cFW42DzPLzt3Y5xntnNMBeR169qNwYn+VKM7Tmo/vckcjvSGS/dJzRx19elIp35GM++Kdt7YoAb0bpyKkXc3GOfalaM4zjgj1qOZZJrO4hhuPss8kbJHcBA/lsRgNg8HB7GqAcvUA8U4/Jjjk1zDa/rHheOM+KIIruxQYOu6ajbV95oeSnuy5H0rp1dJYY5oZEmglUOkiEMrqe4I6igBdp45xTu1N3fe784pVfrnipAFVmXB4FPKleM8dM0i46N+lYsOrXq/EO/wBGnZG0+TTo7yyUKAwYMVkBPU9VNIDZPv09KT7oxgE07+IrnLYB29wDxzWNqni7R9HvjYT3MlxfqoZrWyge4kRT0LqgO3PvTA1uQaePeq9jfW2p2UF1aSie3lGVYDHfGCDyCD2qbd1HegCQd/6Uv48UxcqBzmpI18xgAcZoAaSV4P50qnNZmmeJNJ1nUbvT7S9WTULVis1q6lJBg4JAYDcPcZFaedvbmkAKeO1O6dDmm8/Wo9rGZW8xguMbP4frVIWhLuzj1pe3tTe3HBp2eOlMkF6/j61KG7gZFRDhue1Pz0HT0oAXtx0qHVL37Doeo3DHAhtpH/JTUox2/GsP4h3C2vw98QM5wGtjCMdcuQg/VqBWLPgyxfS/BOgWchBeKyiDY9duT+prW5al8kW8MMQyRHGqfkAP6UK3vQMBk8cUu7vijBbt+dA+bnPTr/jQIGbj3pN3oOawJviJ4Uh3eZ4k05CpwVaYZz6Y9aof8LX8JNJtg1V7lyeEt7SaQn6AJTGdacsemKb1PXisbTfFsesXEaWekat5TNta4ubQwIvvh8Ej6CtfcOQD070gHjnpT1bsenrUPTBp6k8UAOwCx5pyn8qbwOlO7UEkm7im7vwo3MsblU8xwpKx5xuOOBmudmm8UXNs9xO2m+HLaMFnLg3UiqO/BCj9aAOiKHGf6URtzzWXZaa5MVxNrN3qCsA6/cRDn0CgVpqfxoHYeeHFP5+lRg+lKrHnigQ4Z/GnHpk01dzEjHFZmoeJdI0n5bzUreJ+vl7wz/kOadhGkW60iscmsjSvEY14RzWNlO1jINy3cy+WrD1UHk1q9uKAHD5uBxTvvdeoqFc465NSK7Y5/OmA5Sy8U8Ybmo92elO3UwFZsdOlIrA5PWl3A9Rzimnk8cCgB/ak3baTIUYoyPTmkA/dxmim8UisO/ShAO9uvvQMHkce9Jn6Cj+HGaZI5WZe/FPVufWolPzU7PpQUOo3c9c03d6g/nQGGPU0CJAcjrSEjimFivPag4xQA/NIGPPpRuNJQIkz0pD6ZpvNL9aQCEHOCc0hB6Cgnn0pevtVCFXgYPf0p2QF60xevI/KnH7vSkACkLdgaOfSjt71RI8Mduf1ptBb1+tJ/FkVIx4J6E0v+TTRQG56ZFAhWz24FO7dKjLH6Uq809QHbvmo3U38felUjqelAC4z1NIzUhajpSAduaik59qKAPPud2T19M0oYcA8+oppbJB7d6Q+o5Hbiuc7RzM3UUvIHvTdxVTjrSKx7jpU27gHDZFR7Qo/+tT2/eY59qYynbg5+XoaQCswOCOvSl52nsaZnbxmnbhVFCZLYzTpJAO5xSeYAc/0o4OO/pUjFb5uR17+9IvuKVV28GjpyelMRyPxnP8AxanXgGwG8kE+n71ea7mRRuAIxhQOPpXD/GSEyfDXUIQcNLcWsQOMj5p0H9a7a43bz71MdzSXwobu42k/40AbVI+8Kj/hyetBVtuFODWhiSLjHNKw3cjqKjTeGAbnPXin7iuBjnPNAAiZU1R8Uabcax4T1iwtxvnnt2WND/E3Xb+OMfjWgpbcelUtWj12Tyhod1ploRnzG1GCSX6Y2sPegDAk8ZeGPEEemrqkVzbarp8izx2k1tKstvMBg4wOR29DXTalri6TYx3y2N/ftIwCW9lAXlJOTkg42j3OO1Zf9m+OZxk+NtNt8j7tvoaso/FpM1E2jeMoZE3fEO2V5DtRDoUI3HGcDL8nApisVtF8P6vP4p1LVJrGPRtC1aLbqWj3cy3LXT7dokwoxGcYBG45x2rU0bw3YeEGkuW1nUXsYV2xw6heZt7aPptA446feziqy6T41Ubh4x06f0+0aIB/6DIKU2njtBh9S8KXsTcNHLYzx7x6H52H6UDIfh7dWitr+n6deLfaTZ3n+hzRyeYgV0DsgbuFYn866znpjk9K52zl8WWTwwDw/wCGobPeN7WN5ImFJ5ITywCfxro8lWyucCgTG3NxbWEJmvbqCyiAyWuJVQD8zVGz8TaHf3AhtNb066mb7scFyjsfwBrB1bwXoOmSXGsWXgiz8Q6xcT5ZZirMWbq5aUkKo9h3q1Yr4jjVS3h3w5p0Gf8AV285Lj2yEAz9KoNDptxXr0FV9U1K20exe8uvO8hCARbwvM5z/sqCT+VTKzOgLqEfuoOcU6OdocMpIx36UhHMj4kWlwpTT/D/AIi1WNvlOzTGRG9QfMxU8eva9MoWz8F3FoqgBRfX0MSAenyFiPyrpGuZZDy5I71iyarc2fjWLTriUNY39oZLRdoBSWM/vFJ75BB596YFjTLjWp2J1KxsbGPHAt7lpnz+KgVcurO21K0ltLy2hvLWUYkt7iMOjDOeQevIpGYt160qsc5J9uKQFvS1jsY0tbOKOwhA2IlvGqKnYYUDHHH5VzHw91i/1zwlE+qStLqllPNZXcjDlpI3K7j7kbT+NdEsnlsp64rB0fQLvSvFXiK7WaM6TqhiuY7dfvx3G3bIT7EBaBG2jbuT160skiWttPcSLI6RIXKRIXdgBnCqOSfYVmxaxu8WXehzQNDIlql5bzbsieMkq/HYq2PqDmtaHPmcMQemRQMxYPF7SKTH4U8SmIHmSSxWMH8GcN+lSeJNNk8ZeBdasorO6je6tJFjhmhKSbwMrgfXFQXHjG6vLe4XS9A8RTT7WSO6+xoqo2MBsSum7+tUtP8ACsuvWIm8Sap4lnkQnfa3lzHZwjjrttzyPqxoALia41DUvhza6mFt9RMT393asfmWVLbGCOoIZ/0rX8WeIrbwj4Z1LXLuOSW3sY/OlSEAvtyASAT2zWHeeFNH8O/ELwbPZ6bb2Zli1C3LquWeTykdCWPJ4R+T6mrnxQsWvvhj4ugRDKzaXcMFHOdqFv8A2WgDU8I+J9H8cW63GkXiXCggSwkFJYSezoeQfrWFZ+PY28E3Gv3toYvsuovYTwwtnYVuPK3ZPYAg1PbeGdJ8VWug+IYHm03VZLOCaPUrBhHIytGpw/GHH+8DXOeH9LF34c+KXha7n+1XC311MNyhGZZYldWwOB8wPTuKYI6E+Jn17xc+heH7iP7Npbg6tqKgMAw/5d4/Vj0Zuw4611bNukz+YryH4NXlpoUOhR3ckdjBrXh20a2kmIRGuIZJRKuTj5mL7vU5r0C88ZaRZ+E9W8RR3K3un6YkplaI8lo+NnPcnAH1pDJP+EXnbx83iR9Ukkthp5sk01YgFXLhi5bPJyPStjdtOOAc4rmtf1K4k0XwlrB83TR/aVpJdw+Z92KVShRz3ALr144rob+6gs9QW0lfbO0bzeWOojQZLY646fWncCzHI0bdcqeoPIIrllt4vAutWsVsvleHNWl8r7Nn5LG6PIKeiSHII6BunWtvSdRttc0my1KzYyWl3Cs0TMMHaRkcdqzPiFai4+H+vhjhra2+1xtnBDxEOpz/AMBp3EdEQVYgj2/GlH6+1RpL50cEp/5axq+fqAax9Y1jxFBqxs9I8M29/arGrnUL3UhbxAn+EKEZjj6VIG7x3/nWDqFuw+J/hm6ZSYZrO4s2fHAYlWUH/vk0i+INT0YiTxTFoOkae4wt5b6o7YbspWSJc9+npTrf4l+FVuY1g1M6iwOQNPtpbj9VU0xDPhzbx6pJqPiOQtJJrd/IYmbotrExiiUe3ys3/Aqzvh3eWHh/4fya9d3EVkt1dXd5qF5IcFpPtMicnqSAiqB+Va/w5kjTwbp0UaNEbSe6tzEylWQpcSYBB6HG386880/4azXnizW1TWZJZdC1Nruy0XUIhJYCG4HnK+wYO7zGlG4k42iga1O+8HrPNpt5qdxA9p/al5JfRWsuQ8MbYChh2YgbiPVjW8qliT37Vl6Hrn/CQRz+dA9jqVq/lXlnI25onxkYI+8rDkMOo+lV/E2rahb32laJo7pDqmpiSQ3ki71tII9vmS7T95ssqqDxk0h2N1oXjALg4PelUhec1znh3TYdE8Uazptrc3t1apZWk8kl9cNM7zs0oZst0yqpkDA46V0aruHA/CmIoa74es/FEMKzs9tewHdaajb/ACz2zdip9PUHg1V8M6zdXzXmmasI11rTiqztEMJPGR8kyjsGwcjsQa2V7Z4/Suf1kJY/EXw1cqCJNTs7qykH97ywsqE/TDfnQBvF/alwGOc80mNpwR2py9xjjtTJBW7dRT/Q0m4emD7U79KLhYMdO1O9h+VN3be3XtQopiHccHtXP/EaNbjwj9lcZW7v7S3P/Ap0FboJHQYrC8bOCnhq2YZWfWYPzXc4/VaAOmuHPnN9cUz3xxTWbe5PcGlzkc0ASKw47mnodjA5xUSscAinhuCcHgdBQAXUqwwtIsUQwR/yzXjJAz0rA8T6heaPrmgX0c8i2csjWNxGrfINwyj49dwx9GrZS485W/cOVYYO8AVjeNNHudY8F6vZwN5l4qedaHo29CHUZ9cjH40xG5JK394mmD5uCOvc1GZPtlqqyedZyXEYXcBho2ZfX1H9KzPCOp3t5Y3VpqLLJqWm3DWs0igL5mACj4HTcpUmkMhv/Hnh/S9Qk0+W9luL+Ph7WztpJ5F+oRTVrTfES6pOIo9J1a1Q9J7q2MaH8zn9KvanJq7W4Gj3FlbXBPztexO6lcdPlIOazrePxX5n+m6ho00fpBbSofzLmgDYU9d1U9W8Q6boKxHULryHlJEcaozO5HZVUEmrakn7+M98dDU6SDg7QSvTjpQBi2Pi601C4jhh0/VVEhwJZrJ40+uWArbkgS8ilgkGY5UZG9wRimtcOw5YmhWKkHPNBJi+EZDJ4dtYnb57XdbOT1JjYoT+laVreQ3lslxbSCaCT7rr0NV9J02XT9X1GQuhsrmVZo4x1ViPn/M8/jXP6Tql34aSbTrjw/q08NvNII7u1iR4nQuSpHzZ6H0oKOv5btxUd5eJp9nNcmGe58sZ8q2TfI3sB3rn4/EzzeKtMj8q7tbK+tpY/Ku4TGRMhUjH1Vj/AN810isVPHB9qZLMePX73VI3WHw3qEcUi7Sb50gyCMdMkirXhrRYNLjaJdHstNVsgi3O9jnrkkCtHzG5yaWNuQe1MRgeC822inTmGGsZXttp67VY7f8Ax3FXtc1VtHt4I4IVuNQu38q2hJwC2Mkn2A5NRQafd2niy/uFA/s26jSUnjIlHykfkF/Ks/xFby2vjbwxq2Wktl860kTBIjLJuD/muPxoAvaDqd3ePqNrfiE3ljOIXkgBVHyisCAc9mFaiuSvI59q83j1yw0PVxPba5dapqOoX6rcWptHSFwxCAoduAUGP4uQD3r0cqVagBdxxzTo2PAPNIp9aXufzoARmbcPSpFbIx3pgJHTGaFzn1oYDy2FwBk+lJuOM9+9Jhjz2p3HQ96AGljjI60Mx+vejd2HSkfH1HamIUN/nFODdTUeBgnv2pV+U89aBjlkLZ9Kfu5FM3bm6cUv3cmgB+fxo3fMQKZ97rxTu2c0gAsfxoWQHgfyoxzQFIPtQBIrA445pORnvTcil3YHofemSLk+lLjdxnmmb93APNC9vagdh5o6CmMx49KXjnNAhwJz14p5+7moi34Uu8igY/nt1pP1oDd6TP5UCDd75NIW+bFGD6UvegQZJ609Wx04puRRnvQAMxahTnocUnb0pRj8aBDHG5h7dKd8w75ob0pKAsO6fWjljk80lLkZ6fjQFhce9FG4etFAWPPF3cjtjjmlX5VwKVWG08+1IP0rnOwXJ6d+lN3dc/hxTtw70mepxg1IxzEcZ7d6TcBwT/Sk5x6U1jx0pD0Fb5mIHzDGOlN27cAnA7U6Nj9KcTnIzRqMYR1yMA96d0UevSkDfL93OaVm3LigBMgdRxSn7wxzSLkj1HtR5YyOeBTEct8XGP8AwgD+p1GxGP8At5SuzuM+Y2Puk81xvxWO7wban+9rGnrg/wDXwtdrdcXLAHAyeaS3LfworqoZueeKVs44AGPWlA5/SnDI9D7GqMgHY/pQfm5zSMfXjsDQfu9evvTAFmDtgU5cbsEnNNXH3hgGnLyzHuO9AEeo6lbaHp819eSFIIgBwNzOxOFVR3JOABXAfETxodP0jSrzUtE1HRbi11OCe1uLhVeNlJ2uhZGO0lGbhsdK6zxpo93rGkWr6eizX+nXkd9DbyNtWYofuE9sgnHviq8+sWvjnTbzR9Q0HVoYrpDHcQ3VsEVfcOTg4PQj0oQGh4t1a50W1sLm1SOWOa/t4Jt3OIpH2kj8SKtyavp41eTTI7pJb2PmS3iO9o/97H3fxqjr/hldf8G3vh+K4kiE1qLeG4ZsyRso+R8+oIBzWF8NbvRNJ8MR6fAkWlalby/Z7+znkzcNcZwXYn5nDHkNzwabA7Vc7j+VP7ZqNG5xTs8ZxUgOycEqeaZ9/AbnFA+ZeDjmgZ6mrQClcfe/OnDBXJOB0xTcNtGaOG4oEQ6xqUeh6LqOpTo0sVlbvcMkfLMFXJA/KsrXZkvL3wHfwMsi3N8xSSM5UxtbOxIPoeK6GGQx/eG5cYKnkEe4rj9H+HK+G9et7iy1SY+H7Vpp7PRZFDC1nlADFH67MbsL23GgZ1bsPMcnnnmpVxu45qtH8wZj3bn1qf5QBt6UEj2784o/h69Ock9KQkLnPSpImAIJ57UAcprl9ZXXiTwRqFjf210zXk1mxt5ldmieFyQQD0DIv5V1e4q59azrXw3oWn6m2pWei2FrqLZzdQ26rIc9eQO9X9u7PrTAm+0NnkkZ460ySC31S1ltLuNZ7SdDHLG3IZSMEGkVfm54rE8SeNIPB+p2K6hpl9JpVxG2dRsoGnEUgPCOijIBGPmoFY52x0fUZND1DRrOT7Xq/g7VUl0tpWw00ewOsLN7xuyflXZaZq1h4u0a4aESRx3Eb21zayrsmgZlKsjKehGSPTuOKzfBUdzcNrmu3UEli2tXYuYLaYbZY4VjVI94/hYhc4963XwJGcqqyN95guC31NAypoumW+g6TYaVaGQ2thCtvF5hy21RgZPrVpbW1hurm4jto0nutouJQozLtGBu9eKX+Lr26U5G+XHf6UAVbnR9KvLKCyudMs7m0tyDDBJCrRpjptGOPw9a434jfCq38Z6ZqEOlXf8AYc+orHDerGMQ3EaurAso/iAU4P4V3Yxzjj+dJkKSO2KAFvbe11K3ms7m3S5s5o/KkhkGVdcYwfyFUvDvhfQ/C/mtpenrbvOAk0rSPLI6jou5ySAPQcflV3cNwPQYpzMV6D/69IDk9L0TxZ4Vs4tI0j+wr3Rbdm+yy3zzR3EMZORGwUENjJAPHGK1vFej6j4i0H+yIp4rOO8Kpf3CjOIerrGD3bGMnoCa1s9e/tTy1AEjbI1VEG2ONQqj2AwKN/rwPamcE96Bk9s+tAFiMK21WVHQn+NciqOmeI47rVL7TPKmsb60w5glULvjJO2RCDyp596uQj7R5nksspjIEioQShxnBHaufvJ/M+J2lQqP3ttpNw1x6qryJ5YP1KsR9KdxCto2u6VrV/Po1zpsmmalP9qnt9RSTfbzFQrNFsOCGABIOOfrV280WO6ur7UIJDbatc2AsPtKnCjaWZW2+zMce1aBYljzgU1iVyQKQzlbK18UwalqOuXumabJeixjsrfTrG8IW5KyZ813ZflwCcDnvUTL4uuvFmh6zNoGnWltbRzWVzHFqXmy+TKUbcMoo+VkBxnkE11wJbANO3HJwccY4p6AYuqabr1lrU2qaA2nXS3MUcV1Y6huTcUJ2uki9DhiMEY4q1eSSXmhPDqytotzckWyNZzmV1duFKMoHf27c1fVznrVbWtL/tzS2tFupLG5V0nt7uIAtDKh3K2DweRyD1BIoAr+F9RudS0dFvgF1S0drW8CgAeahwT9GGG/Gs/VmOofE7w3aRBsaTZ3V9cPg7R5oESKD6k7j+FXfDeh3Og2+oyX+pHV9Qv7k3VxcrAsKltipgIOAMKK2GldxtPTHPr9KQCHmlVj1700/rmlXP496YDh8zEHrTw3p0qLuaVWwaQD29c80u7HJ9Kb1b0NIzc0xD1Ytg1i+LmzqXg1TyG1jBHr+4kP9BWzuHGOlYXiqRX8SeCIM4dtQmkH0W3k/wARQI6Bxtc/pSg8U2TuVPfvSZ3LxVCJt2PelVs4HSosbh1pwypoAmJ7d6AxVhg0m7jijPY9qBGdr2mTaxYrHbXX2W8hmS5hkcbk3qcgOBglT0NVPDemajpv9o3erzWsuoX84mdbJSIYwECqF3cngdT61sbtw9PQ96awORnmgYu/HSk8whcYx7UcegAo+poAMFuc5FO3EcGm8nI6U0kr1OMmgCYEfQ0KwbBAzUZ7daB2+tArEjSH7uCPwqRJ224yR6ZPSod3Y/nSj5hmgYy5tbe+mtZZ4xJJauZYWJ+6xBGfyJqbhuv8qaW2rjrS9R7CgTD8utPVwFzUXJ5peD/9egkezHoD+VPjlZRjOKiz6UgYjrxQBO027BIBx6io2xnPPNNZjtOOaT5v896oB3bilHSol/yKeDikA/cMetIMD2pFbqCM0bgvB/KkBIOfakZgDnrSbuM4/CkXjqcimApz2NJu7Z+tKenFAHTNUAc9c/hQeVBBzRuHfp70gO3+lIB4b5eeDRuxTN27OcU7IWkA9Tng9aX69KZwelCkZz+PNGgCh/mpd3NM6nNKuO/0pgSdO9APvmm9sfzpFytJCY9SF65zSsffnvURJyaM8e9MB/P4UqtnrTN3Sl8z0phoOGe9LuHHrTPM64IzTd1AEvmfhRu49ajDZB7Um7nrzQIl3buTRu6lajJ3ZpY2HSgCQHvSlhg0znvxQrDHFIBSSw60gb5setN3jOO9Lnt270xDt3XmlHPUmmbhwO9C9aBjgcfSj7vNJz16UM5bHSgB3FFNz9KKAOBVi3QcelLgAD2p5I67enSk3bs9vc1ynWNJ3HOKe2McUjbVAzyKVjkZ7UgG7fl5/QYpPufT6UhPze3vSLyeTQMUZ5Yc+xpWPTJ5oGSD34oHbP50DDse1JwvHWlyDweooXn3PsaQBHkLgdO9Jyc0FvQYP0peR/nimI5P4rShfDOkQHJ87XLBeB/01B/pXbXL/vmyBnJrgviwpbT/AAiATlvElnlQeuA5x+ldxcPumkOMDdx2oiXL4UKuevekVj1OaFbC4HPvS4yCTx7ZqjIa0h3cgg/pT15AAOQT6U05xx+dPjbd9aYDuOB0FIv3uadkKM0cE8daQBvK8dz7U9pmOQWP51GxGKRu3rnr6Uxj1cqwGP8AgVVbjS9OutRj1CbTrWTUoxtS7aMGVR6BsZq0edo796Xg+tAAG68Gjd09KTBXjOR24o789KBDgo6ClU9eaTaeDmiOMtkqMDrzQA0P6qcZxT423MBjij+IqRg+9IPlI7VQE27HBH0NI3Tp1phfcQcZ44pokGB6UCF4AAAxg1KpDVGPmKml3ckDrQBJnpkZo+92JqP52xyAPSnfU4FAD0z6cU7f16/lUYbBPSnHHyb3VGkO1AzAbj6D1PtQA/cTgr1qSOYrwCQPSoGJjJBOMetIzeZgg4FAiZ5CzHPPeg9R6UzlQO/HWjceCeKYDu+D1p2flGe3Sm7g2RScjv1pAPDHcCenrTd2GoOeBTV7Z5PpQAvDN0+92p/KjI/WovMAwOpqVWG3mmAsbe1K0nTjJpN3GaRmZTz+NIB+725p3mMnIpqsRzj6Gl3HPrQBz2q/D3R9a1J9TiN5omrt9/UNJumglkHHD44boOorR0Hw9ZeF4bhLRp7m5umElxfXsplnmIGBuY9gOg960c4bpTTx19aAHiQ9hn60jZ3Yz1pm7P54pd+TyMHHWgB247RnrThgMO1NUn5TxjFKvHPXHvQAZ6dM05mx1PAprNtwccZ9KRueaAHF+mQD6Yp2ew6+tRg9ABzjpStQA/qOKVW9TTPbPWjdtkFAEvHWmnKnIxRk/T1pNwHBOKAHc0jZ7GmtkY5zTunPemIWM7epGawdcj87x14MPTyheyf+QlX/ANmreABJ9e9Yt4wk8d6CoOSlhePg/WIf1oQG9ksx5xTu2O9MHynI5oZvl461Qh/1FKrcdajVsYGfrT/1pBYczbcUvPHeobm5gtITNcypbxKRl5GwvPTrTwwZQykMrDIPYimFh+G+nNGMe9R+Zj5cUu496QWHnByaZ3zRncMjik3cZHHtTEKctSZ7Hmhm+YehpjZz7UASD5u+aDzznHNMUEDrzSqehHNADtzcZ605cc9jTNwLdz9aXpgCgBdxLU5SPXn0pm40mVYn1oAl7UZqPd3pfve1AD9w47UE7h6ZqPcVwM4NOU7qBWAjqKUEnFIcdSe9JuI61QhwUkHBxQretID3BwaM7sgfrSuA5cdc0tMWnbj09aQh6lVXHenL06VDH8p/SnFiq5B5oAf2xQfbBpm/5QSQTRnjOMGgB/UYNJx07UKflzSbqAFC4460uQSOKZu29c0bvUYoAk6nijheKYPbrS76AH/w0babu9adu9+aLgO3D0pQ2cmo93/1qRWOTn8KAHnp1pF6cU7Ipg+agBW9P6U7j0waYzH8KTlee1UFh33e2c0K3tTc+tL0HB4pgx27nnjNLwM4NM+8vOM4pv8AOgkepPNKGGfSm/Q5pAPm6c0DJw3FG4Go8j8KN44yefWlYY7gDNJ/Kk3elG7oKZI73zx6Ubh0zzTdxHp7U08cnrSGPZ/zpWYcGo959M0Bi3Xr3piJM0VFx/eooA4pecdhSbRu46UAhTt/HmjcOBn9K5DrF288tz2p49PyqLkdOaF6EHn0oAVj9TTWYZA7fShs4J7CkCgr0x3pFDkbceTmgnvjmoydvOOM0/sD1oAezcd80KcdG/GmAluTwaUMOw5oAdtwh4poG49Kdu3ZojbcPQUwOS+JW2RfBCD+LxJb4z67JK7GZcXB4yuTXI/EfEl94DT18RwnP0jeutuM/aGwe9CuXL4ULtHYkY7U/GBzx6UxOvt7UvLdDzTZmODbaT7wz070mBnPSjp160IQbjkDnpQjAMfmwfrSNJtwe30rJ8SapdaHZ2+owwrNaRzj7cuMssJGC6/7pwT7A0xGyzkjOPpQPQdafHtk2PG4eJhuDLyGB7isTwfq93rya59q2MbTWbywiMa4zHFJtXPvikM2wpCj19qD8v8AOnOpjjU5xz1zVDUdb03R/JGo39rYGbIjFxME3kdcZqgLjNnGODnFP5ZhzjjpVS3vrO6/49ry3uT/ANMZVfH5GrKsOv6igCeGLzmSMYyxwK5Sws08ffbNUuri4TT98tvpltbytGAEJUzsVPLFlOOwAHHJrr9PIN1FyA2eGboK4HwLr6aT8HLO+kxHNZWk1rIjDrdK7xlcepfoPegZ0XhHUJte8K6NfSt5k9xbKzt6t0J/MVLoviC08QpftapKq2V7LYuZEwGeNsEqe4pPDemNofhvSrDI32ttHG5/2goz+uatwwxw7I41jt1dmdY1AXexJZjjuSTk0CJsDORngUqqCe3AoUNkY+96UgZJA3lyxyGMlXWNwSh9Gx0NAWANjoeaVmB+lN+97CsjUtU1+1vp4bDwouq2ibfLuhqccG/IBPysOOc0AbKn5cY4HenZDKM8Vi2mreIpCftHhWK0X/sKxufyVa2F+bBK7WI5XIOPancRLEu47QcM3euB0nQrD4oal4p1XVEM8EN3No+kozEfZBBw88ZB4dpcnd1wAOnFd9CwWQcZAPavIdM8Xf8ACH6b4q8JWRWbxa+uXUOn2RyGZbtmmSf/AHUV2JPbb7iqGj0PwZrUviTwPoGqXDGS4u7NHlc9WccE/iRmr+qaxY6DZJd6hOtrA88durMDgyO21R+dM0jRovDei6bpNuS8NjbJbqzcbtoxn8Tmsfx14MPjxNGspdQa00u1vFvLu2jTLXOzlFDfw4I/WkI6qT5Djnjg0jenXv0ommLSMzcEnOKRmHbrRcB3O3AwD6mkDHd/P2qNnwvtTlYEf/XoAcW3dMH69aVfl46nvRx24ppz0/WgAVdz5J47VJ0PXB71H95hg84pw55JyelADue5p2eOTn60nOM49qRmKkdBSQrEm7Cj8+KccfSot3fP5UHPXIIpgh4Py9fxpG+ZcEnr1pm44IYj8KFk49COOaAsSfw8nPvR/DgU1W3cHFKrDnP4UCsOL9ARxTlbtTGYcfpS8L/PmgBzt2xTVcNntjsaTduPPBpCRu55oAfwMHrTlOWqPOF5OcdMU5fy/rQA5vbg9aN1N3dQPrUZc8ADNA7Fjd6DijjvUbyHAAHT0pok5HbigRK56U4Nhfao/M5x2o8zb8vegCZV6e1Yc4J+JOmvkLt0i5AXucyxZP6frWwpJYHp61hXku34laPkf8wm7GMf9NITQB0TNzjJo3DHWmu43ccjNL5gbj+lMRJuDdRSM4Ugdz0pu7b/AEpuTvxmkBV1/Q4PEmm/YJ5ZIU8xZA0eDkjnGKuRQpY20FsmfLiQIuTzgDFSwt8wz0rA8HzTy6Zdx3UjyXUN9cKd5yQu8lR/3yRTA2icj1p38IBGRVDVtatNB02W+umZYlIVVVdzu5OFRR3JNP0XVodc0i1v4EkjjnXcI5eGX1B9waBlxfl6flTs5zyKztU1S+sXhFpos2qqwO94ZkTYfTDEZqza3Et1biSe0kspe8MhUn8wcUxMfLMY4ZJFjaVkRmEadWIHQe9ZPhXUNU1DTZ5tVtmtJjcyeTFIoVxDn5NwHfFbUeGYDODWdpurf2pcajE8RilsrkwMC2SRgEN+INBJocbaMgYz0z1poB69u1K3AGRg0ABBwMNjHtT/AFyPyqNZBxlfwp/H4UAH3sjkgik4XApN3cdKU5PUUAL5gXAPelZsjIpn1/AUdF/lTGOLHHSlz/3zTFbuTzRv68cfWgRJuo3BuDxUazBs+opSxxz17YoEP+6Mg5GaUfdz0NRKT3pwOPakBJzSfdPNR7jzzxT93yjJ5pgP/Gl3Dr6VGGPpSlu5+uKAsOXH1pwbpUQbOTjHNG45JIxQKxIWxx29qXHXj5aaGJX0pdxPTgU0IazfN/KnA5pnrn1oVjuNMB/PGBRyBTQ3ynPNKG3fSpAeG7daTpyBTQ23AH50uaAFOe/FOU8e9IynrnNJu9qAJA340bvwqIM3al3H6CgB+78qXdx15qE0/d8vFNALuo3fjUe49c80m84JNMCXeKN351ASeqkZ+lJH5m75yAPpTAsbs0u78BUXOSMilVh0pASFuOaQEHBxmms3GRSKT9RQBJ/DQGHemZKrk8Ui/gaAJNvvRx0ppY8U3cfXFAEnbHWk3dcVGzHp7Um/cQRimBPuopn5UUAcScbehzQrDOT1psnOOeKTrgHGRXIdJO2DkCmoQoOeO1Rhs4p/QdfwoAXd14wO9R7sMcc0q8ewxTdxzz60ih/3hkcH6UYAz61GWZgfyqQZ2gGgB3rTWbGO5ob5ef1o4bgjB65pAL/DgcemOKevt1NNC4xg5p+3OPmIxTuBx/xEY/2t8PFPRvEMfJ/65PXZSqzOx6c9a4r4kN/xUHw2H/Udz04/1RrtZGbcxx196DSWyET7wGaXJ7DAzTVwvbFL34P1qjMceTnORSbg3GeRRuzgjrQ2OuPm70xMawzj86cu3DI6iSNwQ6MMgg9RSbv17elIuD0PNMSMDRbpfBGswaFqUnlaLcOW0vUJmwkfUm3dugI5Kk9Rx1FcloOpXk/wusJ7S6ayuPFviWRPPjOGjiubqQkqccEomAf9rivSdRsbTWtNnsNQtY7yznXZJBMoZWHuKztV8K2mpaDY6TbMNMi0+4trm08lMiFoXDKAOOMDH40rlEHgm3tLGbxFp+nLt0ix1N7e0i8wyBAI0LqGJJPzlu/XNbF/ptjqCBrzTrfUWgVmhjmiR2Bx0BYcE4rC03w/qnhe4Ntpd5bXOgSzPP8AZ7pSs9uzsXbDr98ZJ+9z710m7OMnJxQIwdFs4hP50PhFdEkYYaaQRKx9vkzn8a6FQFUHv+lMZy4ABo528mi4EitscYOB615xqngHxLeeJrxNK1Wz0nQYtTGtwLdWxuFluHjAZCm4cK6lx7vnnFehdVGafycZpiRzv/Fe2PzMNC8Rr1dYRJZzH/dBLKT9TTdWvv7S0vQfEsVjdI2l3bS3Fm0f75YipjmUL/EV+9x128V06yH/AIFinLM5Kndg9qQzmfFHiie1+F+ua/ZxXFhP9id4POXbNFuYKrkdjghvan6J4Z03wr4wn0jSLUQR22kQvdMuS00hlcCRz3Y4bJPt2Fa3iTSV8TeHNY0iZwi6haSW/mNztLLgNj2OD+FY194HF1NHrFvqM9n4sS1ihe+ilcwzmNANrxk4Kkg9s80DOmKDdnpmsrUZvE6XjJpdnor2gxtmv7mUOeP7qL/WrttNcXFjbSXUS2900YM0SHIVscge2anz2ycY/GkBmQt4rEkZuYdAZCf3qW7zKwHsTnJ/Ctc4Hb6+1N8wnv7UKTn3NUIeuOGzyOQa4PXvhLDrXxSh8YwX9zpk7aa9jNJZSeXMGDKUdTgg8AqQ3bFd0GB6Dmlx5g9hRcRzcieKPDcJeOceM9PjBMkNwiw6igH/ADzZQElPsQCexrYhuIvEug3Js/tNl9rt5Yo2miaGWNipAJBwRgnrVyNnXLcBu1DO24Pv+b3oGc74H1aa60vTtLvrbUItYsbRIL2W4gYR+agCk+YeH3Y3ZGetbtjqdpqU2oJbuzPYXJtLhSMbZAqtj3GGFWhO8igOcmuZuNL1zRvEWq6no0en6jp2pPHPcWFw7wzrMsaxlo35XkKOGHX9QS1OjyGH9KAu0DOBjoahs5ZLqCOaW3ks3YcwykFk9sjirHBU/lincB25VxzzR95SD+NRp79aU54xgikIdk8Yz7etGd2O5po7c4Pen/d+bpTYx68A80jCo423Nzx+NO3ZwcYPSkOw9dvJpPl4IzijcN1Kc9uPancQccgjtSL94gfWg5x6U1QTg56UAPZgy8jI9acvb0prEZ5pS2OMce1IQrEccZx6UvfNREZK0qsVByQcelUIkKjb05pN27n0pegHOabnsaBkoIHbtzTdw7c0m4HB601id31oAk2496Z8vnr+VAGBxSMxHzDk9akCZgVJ7im8ccA+hpZPm5zkHkc03d3pgKzfN06UfqaZu289Pan7vlHrTAf5meewrG1A7fiBoDHjfYXif+PRGtfcMAc5rC1ycw+OfB+BkyJfR5/7Zq3/ALLSuJI3xyT0BqT7yg55+tRMT2o3jbknFMViTzORmlLcjvVfeD/vdjThIdoBPPamBZDFcHGTmsy80y/tr6a50yeCP7UQZ47hCQCBjcMHrir2/PJpxxgc8etCA4X4hPfDxn4IgibzLab7Yu9xhFuvJxC7ewOfzrS8LalJoen6doOoaRd2M8SiIXCgSwSsBywcdMnJ5Arp2YYG5UYqcqWHT6ULcNtxk4z9aGA2+tzeWrwC6mtCx/10Bww/Sq1pYSWJXN/dXR7+c4OfyFW1b5jnn2pFbAzSAk8zDA4rB1Cx1ay1ye80mO2kS/REuPtDlfJZePMAAO444xx0FbW7eRz2pfM45OR0NUIxfGkr2Gk2WohmddOu4ppyueYz8rsR7BifwpkfxJ8J3TKkPiGwkdjgL5nNb6sNvHzK3VSODSfu9uPKiCnqvljH8qGLcXzEdVZXWRGGVZTkEU5G7DkVEwXaAoC46BeBRG35elIdibd3Ao3bc5pFO5c/pSbuPm6fSkMcuDRuzz+dNLYHHH1o3D2pgDeuKTcBn0pdxx1/Smtnp096Lkjh0z1peSCOlMGVwc0eYNp9+1Fx2F5welK33ePpTF6GjfjigViYN8vOPwpM9Bn8xTc/ISDim5Dd+KdxEqtQG6VGM9jzTtx4z37UegEhJb60m8dhj2NRfdPtTyd3Q0wJOMdcH0o/zmodwD1J9eaQtw3fNjrT+vQVF0bNO8yquFhcngAcYpy9ulN68g4NIxHr9aQDt2D9aXp9Kif5hgGhWPc5oES7sZx0pFb/AApisfx+tJuHJJoAnDYGSKTdUayccU7r14NAx2fwoZup61HzQG/+vQJkmeKTjv0pm4AdaRmIU4p3Ak49OaNw9OahVicA8D8qUenUUCJaTcKYrHkH86GYZzRcB+T25p3uOtQlgepxTwR68UgJAx7ijd9MUzJ7n8qTf2oAk3Uh9xTPem8+pyKdwJN3YYpoPTsKbkseaTNFwJd31oqP5f8AJooA45mXBPSj+LOTk+1RZy2BwopfTqK5jqJduOe9K59+PWojndw1Pb6ZHXFSMGkC8d6buHQde9Cxg4ycjtmvH/jT+054Z+Edw2mRxSeIPExGRpdkwHlZHBlfog9uTz0p7gexpGWyQeKeIztJPB+tfAGtftnfFTVLp2sX0TRYSSUhhtDcMB6M7nk+4Aqz4b/bc+I+kSk6xaaL4ghznaqtaS/TcuV/T8arkZVj72PTsPek3BVHU84Jrx34KftReGvjFcDSzG+g+JAu5tLu5A3mDuYnHDj24PtXsjLzk9TwMUnpuAbhyByaOQetIuOg49c0n3WP9e9Lck5L4ifN4m+GgJ/5jUh/KBjXaTP8xx0zXD+PZMeL/hrnLAarNgd8/Z2rs5m2v0xz1pLU0lshGl5OTkd6fwQOODUCv97cD+NK0hUDjIo1MyYHgN+GKc0g29x61AsjSZOM+9SK2eepzVALtByTyex6U2PcvHfPSkyV5+97UBi+SRiqEP3kcfpU27LH9arZO7pn0NOyeD096Bj2UcHt0IpN27p6U1u+c0i/KOKLiJFbk8Z708kY46etRqVBy2elOVxnp2pD3FXPahXHOfXBpGbB5GB3o4Oc9KLgSZ25HU9M0J2z0FROx6g+wJpdxyOefSmBOsm1eg9BTY25OBg+9NXIxj5qUn5sg59qAHeZjnGeeaX0waaeuRx2pPwwO9ACsxXutPyVHvUTKWyDtIxxzSmQY460wJlPzE5xR0Jpisf90+9Lu+XNADvMHTvRuP8AiKZnil5yDSuBLn5BkfSjzD+FRNlehxSn7p5x9KYiXd8wB57GgKF71BuZc9178805W4zn6UDJWUdOlIrfMAOKRmLL1/8Ar0D1PFIQ5WIbGNp70rYIztyaaufMoZiMfkaAHt27Ck5yKaT09abntTGThhQ0mMZ6mohzgGlbPODQBIXPGBSdgB1PcUxW/wAaTcdwHftigCVOnc/UUpYKtCn1+99KRiMEZ570hWF3dweKRWw3+HekA/L0puCOh4pgTq2R06dqXI4zxUQkO4EU5s+tIB+QvH603nnI+Wmr7nj6UnQ8sQDTAlb7278Kaz7e3tkU3r/Fx2OaRuoGaBWJUYeXhTz/ACppbaD370yGMs7DPB+Ye3rTn75/OgAXPHcU7cU6fnTCTtGOlDHtnNAiUMa57xF/yPHgRug8y9X/AMgZ/pW2M+vH61geJGWPxd4Hc8n7XcoG9M27/wCApDOlduTn6Uh+Xpwaa/3jTfug5bj09KYCs7cdAaXzDu9RTPMBx396Rsdjwe+adxFtWyMZ+lO77gMHvVYSZ/iyKk3cH5sk9qBEv8Rx6dKbu29sgUwt820859KYy8ZGQaYiwGBwQee1G7k1X3bePmFKZOuW/WgCXeQwxxStJu6GoNx9fl7mnKNvTkUwJVHTP6Uuefao16cdMdDR9eR/KkBKvrSbtvrg9DUTduxprNt6n5v50rgWVcg+3Wn7sDPaqkdwsoYAfMvUVIjhuDxmqQD2k3Zo4wOcGkkgBYHv7UeV+WehpiDeVxzTlbjvml8r0GaYsJXPpmlYYv3uG/OkZemOaesJYnrinrC3I7dcUhEC/KMDikbP1q0LYspINNa3Yf8A6qYESMWG3PNL35pVtcScZOfyp/2Xdz+GKaEMjfaef0p+cg8UrWm7AHyntinLAeuKYXIcj60K+M54FT/ZyF9KT7IGXkc0CIWI3dePSlVucU8WjBjk5Hal+yk4waAGOw78e9CuMVKbNj/gab9lYdOlLUBocn6U0k7fUVOtofx9ad9jIHpTsBXzwKbuAq0tmW42kfjSnTsg5XmmK5V8z8/Sk3Hpjj1q21iAoypyO9ItiQOaQrohVvXpS56c1ZWwIHGcdaVrPuy89qLAVWbdnFJzt4FXFsyvG3HvU0VoW4IwaLBczMY56UHOOOla7aaNo5pq6f1HWnYm5krkjpxSqCrDP51rfYCeo7elSR6eGUcdvSmMxDIPM2Z5p+wk4P4VqNo67g5UZ9akGnKGAI/GlyiuYUhEWMKSTxSLI2cFeOxzXQNpqt2yaZJpKMoIHI54ppWDmMQEt2INSrG3UjmtiOwRlGPxqT+zxzjimLmMZYz16/Sl8s5AK5z3rZWwCYwcVJ9nB4ODSsHMYTQ/h+FIbR2XKjFdAlsuegIp32dVOMAiiwrnOfZX/wAiiui8tf7v6UUWDmPI1bC5br35p6np3H1qMyD05pFfr3FcdzvJ/rS9QB96oTIV6c/0qRZvmUD07mkxnkH7T3xol+EfgmKHSZFHibWGaCxdgCIFABknI/2QRj3Ir8+3kl3TXEjPcXFxIZJrmViZJZCeWZj1JNe3/tkau2qfHW9snyYNL062s4VJ43Oomc/+RF/KvEWjV+AysW564FbR2KWwxZCrfNgMeCTTXkyx4+Qe3FO2qcA8FT1Wk8sNyTkZ5PetSSG3m+xX1teQtPFNbSCaKa2l8qWNwcgq+DtPviv0Y/Zl+NB+M3w/F1fKsOvaZL9j1CIHq4GVkHs68/XdX52tao24eZ82MnNe/fsN6xPpfxi1rR43/wBD1HRzcOvrJFMgU/XbK36VEldCPu2RvbJpDIcgZ/HNRO/XnvzmjcD05/rXOO2hyfj9QfF3w0Jxj+15z/5ANdg+1XriPiJN5fiz4ZnHXW3Xn3hI/rXaTLuckc/hQmXLZD2w38OaRV+U84PoKj3FeDkCneZ07Ht707kDmHlg4+X1zTlYqvbNRsx+lODEkgkE+lAiRXRuMnP5UeZuXcM9aYnc4x71U1TWrLw9pr31+7xWqyKjyKpYJuOAxx0Hqa0EX1YYH9adkjoDjvTfk8tJI2WSORdyOpyGB6EH0xVG61y0ste03SJd5u7+GaaHao2hY8bs+n3hSZRfZif5UbuOMZqJm+ajcFUDnmkFiUMdwpwbAB/WmR89+P1o3bgccelAiXzFYA985oLduT+FVpJEht5riQnyoUaV9qkkKBk4A5PSoodX0+TQ01o3qRaQbcXRu5DhBGRkMc+3br2oEXFIZScHH+elOzxjrXPeFfEN94miudQktPsWiykDT0mXFxMnOZmH8KtxheuBW8v3VyfmI607lWJNxx6fSkXrnPJ6UjNkjFQXl/babZXF7ezx21lbr5ks0hwqAd8/5zSAsNMeOOO9ODjGM9Kqw3EN7a29xbSrPbXCCSKaM5V1IyCD6U/7vTP50ATuwyPT0FIx4OeKgaTDAd8461K7DIGcnpincB+4sMDrUg+YDsKgHK/j2pfMA4z+BpBoSqfmOeBT9wB6ZFQqrSOFXjPang+YsexlZXwVIOQR2OaBC7x25x2FKxO0dRWQ2tPP4uOi2ES3EdlGZNUuiTiAsv7qEY/5aE4Yjso960gzc5GD0qtRClvQ84qRZM/LjFQZPPpg0+KRZJVjEiiVhuEefmK56gelAyzuxxkHI6UnUGkaFmbavLfTrTdw2qwwUYZV1bII9jQIfuyetDcGmKpJAAJqYwnzDFvUSqNzR7huA7EjrilqhkZ9B0p3LD0okhfGRw3uKFhYx59+aeog3YbApvmbRtHWpVt27A/jSCFsZ2/40agR7irUxZwDgkfWpVhO7nr2OKVbZ2+Xb+lMCUSHaM+nWmbhuOKdbp5kZj6OpwY27e9O+ys2T09qCbjd2V6cUwsVwM596nWBvlLEfh0p/wBhB5G33pajuiHGO3/16du3Lx+VPgs2+dXbA7cdKlaxMbdeDTsxXKy5Y4pVy2QRVj7K3ByCKVbYtnnn6UCuVguDweKD1HH0q39jcqWCjFIbNiwwwzTsHMQRx4Yk8cetBQ7sk4q7HYttOB3570fYw2Q3y+gosw5igylT6cUgy3IGa0GsxuOeRSmwXkkY+lFhXM4Kecda57xWn/FTeBhggnUJv/RD12cen/LgsobuT1rC8T2ONe8INgMU1BwB9YX5osPmRdbcxIAxSNHx0yOvrWi9qVbBXHvS/ZunQH3osK5kMhyBt9+BUbBm4VSDnjI71vrC0fUdfSmvBnGVyBT5RcxhtDMmBtZcHrVjy3Zuf51JrmpRaHbRM6Pc3Nw/lW1pFzJM/oPQDqSeBSaXdXk2pvp2qWcdldeSLiJoJfMjdc4IyQMEHGfqKdg5hkVvMc8gj09PpUqQsy8DJ960vsojb155IoW2+Xk8570CuZ/2c8DrimvakdR15BrT+y9Tz6Zp0dp1zuHtimK5lranILLjP5VJHalST61otb7evIp/2XjI5oFzFBYUZeQQaPs4HHU+tLreqQaBYieSNrieVhFb28Q+aWQ/dUf49qi0u+ubq8ubHULOOyv4UWbbDIZEZGzghiByCCCMUWDmJ/syt1HNH2cL2z9avmDkUNCF59adg5igLVGbeODjHSntYozDI/Gru0EYP4UKu5qdguVRa8BactuVyMZq7sHQUHC45/KgVyj5PGcd6XYOMDB7mr2FyPWkba3GOBQK5B5YxwvPahoTwSOKsZG0GlD7lORTsBAsPzdOKX7OGPSp1I7Udxx3oAi+y7fpSrbjI5qfj/CmlhnvQK4w24XnHPrQ0e3BwCB1BqXcO3AqGQgggHNAiybcLyNpU9sVFJaqWDLx7U6GTdGB1p9MQ1bdAvv06Un2UL7fSn7sZB6Uobd0oAQxpwDTvs6HGBjApm7nk8U7cMnv+NACtCMA45o8pPSgP2xx9aRpB60CY4xgHjkU4BdvSo9/TmkVz2PWmFyTjB4FG0HPb2xSbsjmmbsUgZLtC9uKfx1wKiWQEcHijcMUCHt83vSgA896ZuG2kD9utAEpxjBo+70pm7vQT2zQA5c88ClDFc8CovM68/4UKxUcmgRLvyM03cQR603epHHFNZqoCbdTsjvxUO/ufyo3D/8AXRYCfI2jt9KQtuIxx2xUPmKMc08SBvagBxJ/Gk5x05pjNjvimiUYJzQBKrfN6inNiofMH0pfMHTpQBL5jev6UVH5hooA8g2YX14oZd3HpUjQsmR29aEh+bd1NeeekR7ti88gUscy7hjPX0qZbded2OeTu6UiwxeXlZMj0oC58J/tpaNLpHxsfUDb4tdX023uVkI4Zo18l+fUbV/AivB2mUqo29fpwPav0R/aP+C8nxk8Ew2+mGP/AISDSXa501pCAspZcSQMewcAY/2gK/PS60yfT765s7yOSxvbaQxT2c6lZYXzyrA+nrW0drAim0x4C+vcUeaytkNlug71YWzSTJLKvOOvXrRJbLbxud2NoB3McAcd61sNlfoeAMn619LfsK6Ol/4t1/UJLb97pIIS8UcutyqAxk9wpt8gf7Zr5y0nT7vxJqlnpej27arqt4witbK15aRj6+gHJJPAAr9IvgL8IR8IfhzYaJcyrc6m26e9njGA0zksQPZc7R9KiWiJuegSANnbz+lQsxVuD+lXVt1HqcUSWqA/MeawDmOD+JTH/hI/hixH/MdIP4xGu1mz5hx1zwRXLfEG1D+JvhvGg/5jbP8AgISTXdTQpIxATb3qUrmknojIZwPvkjFKsqhBj5hWkbZVYEx5qVoI9ykov171fKZcxmK2VJJ4ptrMs1w0YbaQM1s+WOuxcYx0/wDr1XksR5wlRArYxxRYOZFbbnOASPWmuyNHJFLGssTrteNxlWU9QfXitFY23AjHA9KDCzAjPU88CqsFzgwsnwxmCsks/gq4bKyAFn0pyeh9YT6/w/Sr2oQmb4p+GJbd0lifQ79xIrblZTLBtIPvXY7maNonAdGXDIy5BHoawPD/AMO9L8M+IJ9WsXukaS3NvFaPLugtkZ97CNSPlBIHAOOOlO1w5iS7uotPvtPtZ2KzahI8Vuu37zKhcjPbgGqXiSHxItvCvh0aclzv/evqiyMgX/ZC9T7GtjxBocmsXnh25t5khl0rUReEyZ+aMoyOo9yGrWkbdISDkA0uUFI4W30vxp9n333irQLRe4j01sD8Wl/pW3pIe4tmD6paatMn35LIAKPwDHFRj4a+FG1KW9m0SC7u5nMjy3TNL8xOTgMSB9BW7a6bY6em2zsoLRD/AAwRqn8qaiDkU7WN47hNy7geue4r5/tYdWVbfTddQL4F8I679ju4ly32jeXeKWQD+CMNEMdPm9q+l4/u/NzWJYeFVsvFGt6grxvp2q28Sz2brndMmRv9MFSB+FPlJUizPaNcRJLCyyxyAMkkZBVlxkEEdRinxWoeMMrxuFJDMrAgEcEe2O/0rJ0zwje+FrjZ4fukOju5Y6XelisJJ58pxyo/2elUPE1nc+CW1rVdMsJ9R0jVLeZbzTbMbpIblkKrPGvoxPzAezdqVh8x0bWpVhzkN0IPY1zuv6Wmq+O/Bel3P77TCLvUJLZj8s0sAj8rcO4UuWx04ra0S31HQ/h/o0bae2o6vaadbxPZ+csReQIoYFzwMHPX0rG1DRfF3ii/0S+nXTfCsmmXIuYmgZ7ucgjDxk/KoVgSCMHoKfKLmLHgW0WPQ7+xjQqmn6reWiJ2RBKzIo+isK3PsBfLY2qO/as2XTvEuh6xqs+gxaTeaZqFybyS3vpHikjmKhW2suRghQcEetVPHGqaPpsOiXHi2O6WNjIP7PsXaSAsq7md8YLADOPr0o5Q5jcl09s7DnPUHA/KluLdxayvFD9onVCY4d+zzGA4Xd2ye+OKyPhtr1t4j8OySWZu2s4LqVLWS7heNmg3Exkbuo24/KurVR1POOoxRyicmcMt947ZePBejwbu8mulv0EVammt4jkm/wCJpo+m2sO3Ja0vmmbP0KCtCfS/ED3s01p4jhit2bclnPpyuEX03BgT9a1I1mWFVneOSXHztEpVSfYZOPzo5Q5ipp0RW+hkMf3WyVPevMNB8QX+i/DPTtG0KBbvxdEl5axxSHK2iQSOHnkPYAbQo7sQPWvXoxhl6ADviuS8I6HHofxM8bz/AGQoNQS1uVlx8rKQ4dR77sk/WqshcxJ8NNNtbT4faFJbqwN7ax308zndJPNIoZ3kbqzEnr7eldD9jBJ4yD2Ncvp2oR/DP/iTaoko8ONIzaXqaRl0t1Ykm3mxyCpzhuhH0rcsfFmm33iA6OnmRTSRiazncDyr5MZYxMOpU5BHXvTSHdlxbbyiGKfKP0ryn4reD4tQ+J/gS8e9uNM+1R3GnQ3tm+2S3nyskT+jAkMpU8EE16BouqXOqeOPGMBkP9nab9ksoo+3m+UZJWHv86j8K5747W7Q+EtE1pd3/Ej1u0vX28ny9+1j+RFDSEm0zZ0bxBqWiXkWm+MrWNS/yR63ZqTa3A6fvB/yybHUHj0NU/g7If8AhX1vaOod9NurmxZmOeEmbbj22la7+R1Fw23a8bHI6EEVyPg2BdN1rxnYCJol/tQXafLhSskKZx2+8rdKQXF8aaxd6HYWNvpZjj1jWL2PT7KaRd627PktMV77VBOOmcVlT+EdO8KeJ/BZsEebUri8nhvNSuGL3F4vkMXMjdxkKQvQY4q78V4GtvD9jrME1vHfaDeJqkNvcTKnnhAQ8YJPBKk4pmsa5HrWn+EfGGl2d5e2NvcNPLBDCTOsbxMjfJjJIPp6U7IDr24bhR1xz0pNvBO3HPSs3QfFWk+J5mSymmSdeXt7qB4ZB2ztYdPpT9E11NYu9RspLObT76wkAkgnIYtGeY5FI4IYfl0pEmht+bkcdqTb82cAipttJ91c0wIdmGJAHuKVl3gbR05qRR+dOHqKAG7dygkZ7bjT1jGOmDSdMdxTg3PTCn1pCEWEK2MLj2pQvynAz7U5sjHNN380xiMo4YgA+tS5DY4H1qMgMOnHXinZ29D+FNEj1HTvQ3X8O1NUj/HFG786YxwbHftSs275uhxj2qPcPp7Gkz83XNAiZWZSe4707J28AflTFI5Gcik3HPHrQIftyOeKSRiOgzzSZH4Y6UFu3egY0OS3NZXiaQrf+GZAeRqYH1BjcYrVZiO2RWP4kA8/w8x6rqcZ/wDHWFAHRNIJG5xUTDA9KguDskYDpnNKs2eCcigZO3zdOKEJ3fXvUSsOg69RVTUIdSuEgGn38FhgnzPOt/NLDtjkYoEVLhkj+I1qZwA0umulo7dA4fMij3I2n6Kan1JTH4s0Z143Q3CEev3D/jVLVfB7a9DAmpa3eSvDIJYpLdI4TG47qQuR+daWq6LDrEFok9xdR3Fq2+K7gkCSq2ME5AwcjrxincDSnkjt4ZJpXWGGNS7u3RVAySax7bxZaXCQyC0vIrGdxHFeyxbY2JOB3yAexI9Kn0/TbyzuCLjWZ9Tt2Ur5N1DHk591AzXJeIr7xVrGtS6Rp7W1nbxzqyxT2LNG0agMGM27AywxtAyKQHfTQvNDLCkrW7MhAmjI3J7jIxmueXREswGufF+ozHrma8Rf0UDFbVtJPNbhry3SGVuGiSTevTnBwKqW/hjRLR90OkWaPnO4Qrn88UElqzWNYVEdw90naR33k/jVpd7YxyR6VCcBhhQoHoKr6tpo1a1SA3t5Yqrbi1lL5bNx0zg8UCKOvRtb+MPDV3cDbZqLiDLfdEzhdh+uAw/GrU25fF0IwMyWbLnPJw4OMfjWc3w80C4hZbqG7v8AkEteXssjZHQjLcH6VqatolhrsEUd1HITEfkkjkZHX6MDkdKYyXUo9SW0C6aIRdNIBvuSQsafxNjuR6Vi+GdaXUtYv7UayNSSFVX50WNjKCd5UAfd6DvWtpGh2ei7/sxuHZuS9xcPMfzY1n+IdEvtSu4GtJLUQLIrl5I8SwkEZKMPUcYPr+FO4G5yvHWk3Ush5znP86ZnrQIcrncc07cWXg/WmZwQaODyDgEc0XAeqnbycnt60bj3OfrSdDnqKMgMe3pTAXado569acmdoGfwpG+6B2oyOMUrgPBwDmkD7jjNMJB6cUL90kcUATHP+JprDPrQDuWmhufWncLEn8OCaZjk0v8AkUm4c+tK4CRDb3qyGz1PSqpb2p6ycUwJsUnfHSmM/pxRu6HOPWkIdu20bQrZHpTPM5waRW9RTEP3c0ufl6VFkbj6VIrCncQ5V7Z5p23b3pm75hxQGpAPb5l96Yv3unFLuwfWkVv7q09hWHcmlxhfSm53GkL/AC8UBYlDcdKU4XvzUO4Y9KcrUgJvu9OlJuJxk0zcKTOaBknHpQGDDHeolanbgaYhTx0/KgYPNH0poYUXCxLvB68ikJ9BTVIHakZgtFwD+VODDjFRbgPelVqYiV8MOOT60xeP60m45ApMk5HagB+KNu3qaaW28UooAdg+hoo3j0opXA81ZQy4NNWMrjuDnPFP44HrS5KtjNcbO4akCnIxwaFiVcgDA+lP69D1pVG2lYBqrt5715t8Xv2dvB/xoT7VqUUuk+IFULHrenhVnwOiuD8si+x59CK9LK7c5OTTc/MCeoprQZ8VeIv2E/G1ncbdC8S6Dq1r18zUVmtZvxCI6n8CK0PAn7DfieHxFp994t1vQJtOtZfOaws45rjzyAcBywTgHB79K+xS/Ugc09WOSM8VSkx3OW8B/C/w78O4GGk6fbQ3UmfMuIraONjk5IG0DA9q7HIJHHFVtw4ByD0FS7sDaetG5I9lGAAABnNMdd7DjGKcM9D1oHoc0xHJeNIw/jr4ax5yVv7uX8Ftz/Uiuzf72T29a4/Xo1m+LHgoMATBp+oTD2z5a5/U11jOWYZFZo0lsh38QpB8uAD1pMkYwaVeuasyJlI2qT+VJ1pvHFJu2/dJ+nrTEO/nQufr601X55B6Uqt3GcZoGPLdjTQct/WjbuUndzTU+90x/s0ASkhmz3xRu5564pqtk9MUd8kUDJF+Zh34ozzj8KZ9w8nNKG9qaESKx9Kbht3t3pMjHrTs+tAiRZCOhwO9L5hVxgkfjUStg98UmRuBBoQFjfxyeetMLngmm7t2R0FGduM0xEudxUg981X1LT7HWLT7PqNnBfW4cSCK4jDqGHQ4PepN25fQijdtX3oGSvcblVRhFUYCqMAD0xQrfjUHPb8aepPrTETDIBPahSWWow3ygcc04MB3zxSGO/h607zGbg9PWouPXIo9PzoEWUmKxsAcg9dwzWd4g0W18T6b9ivNyOrCW3uojtktpR92RD2IP+FW9w6YwaTI2kjt61SAzfC+gJ4Y024g+2S6ld3VzJe3l5MgVp5nPzNgcDgAADpitR1S4geKaJZoXGGjkGQfqO9CsuCB0pPu8UhkrSZ6jAx/kUrTOwGT74qJW9etG4enNAjOj8K6EurS6mdGtZdSlbc11MvmNnGMjdnH4VtNM4YNu59qg4GO1LuGM/xdKGBbVZZm+VNzYwGxk/nXK2twk3xY1dIHEjW2kQRXJXkK5kZlU/7QBPHoas6v4R03xBI0l5PqKFvvR219JEh9sKataHoGl+GLM2uk2q2lux3MFyzO395mPLH3NSM0N+Milb5qZnoKTO3APrTAcKXn0xUTN1PanbqAH7vyNO3fKB360wMFpM//AKqYiTefWnBuvoKh3EryOKFKtwTkH0pDJt+7ngUfdzzg0xfu+vHc0nXp+RpiJB0680KT161HnGcdaNwbINAhzMPT3GKXd83oPWo1bp69qdQBIJB0pd+1hjqexqNsEg96TI7nJHSqCxLndjnjpSnOcg/pUS0MwXjt6UDsSsStYniqRkj0VsZA1OAH8SRWvvJ+vaue8dMw0rS3UkFdXss49POUH+dAmjp7xcMxB5zVMMN2M4PatB3WSV1IJJz296oSRqjYXk46UhkvmfgR1p6vwSelVRIW7ZqQcjk0wJzJSs5DAdRUKn5elLuDEHmlckn9Oe9KZmwVJ4qHcOhPFKrcY7etMCXd6nml3d6hByPwpytjHrQKw/dz0p24Ac81ErfiT0pV6Z96AsSltwo/hpu7t2o3eg+lAx+4jBzQzjHXFQrnb707rxQSPyeuaa2CM9utM/hIpF+XgfMKsRNu2mjdgcVGX9OlOWQelKwDix2enrS7uMU1mDLgDpTMnOeopASjpz/OjcfrUase4xUnCnNMA3846Uvv+FJ+HFIG9s0ASfwkZwe1HXtTN27kccUvr+tSBIGpvVcU3NAbbn+tUAm7qCadvHXFN/DNJtDDmmBJu46Uu48+lMGV4PIp33RmgBNw4Bpyt3pjYzkc0u72/WgkXd83HFK2euabup3QD0oAfu6YJHrS/wA6ZuIB4wKFbK5xntigB+flwTQHxxTNxx6UbuenHrigCXPfPFM3HvTS3y8UmTjpzQBJnJpVbjNRbj170qHdj1oAl3c470u7FR9KOd1AEn/66XcOD1qIErnqPalLehoAlDc0jNio8nrS7tyigB+4nilYjp2qFsjODSAnkZxQSStgU1WO6kHFJz1poRLuHrRuxk0wE8ECjcV/GmOw7dnFLux+FRBjTh29aBEm4elFM5opaAeeAjv19aRed3PTim7sYxz9OaepxziuI77ChjuAIpYyTnPH1pOG/wAaQvhse/FMRI3bPWg4XOTn61GCTnNOXDUAHVv6U5TnjjNNXrwcHNKxLfnzQCH4wTjk4oPP0pN340LncSfwp3Bjl4yCcZGAR2py84JO6mZ9DilVj1pAcpdymT426PASNsHh25kGM5y8yj/2Wuv/AIveuRUCT45O3XyvDK/rcGuvZs5OcelKLaNJdBvrzk0vO4c+1JuHJNIrnuasyJV+770cA8+nHNN/hNLxxnk+9MBW43Glj5ppHX3HSngHGB170ALuHTPPp2pqEAkHmmMDxkcZ7U5VO4nH40ASLz/Fij6dajPzYPv0xTtx7cUgF4kbH86Xb23exqPO3kdaXzODng0wJFUcZ6Z70rfM39KRWzyevWlHzdKAFz0z0PTNG0HIoYFcg8D0qLzD5u0jp6dKYEwG3GTTj7imY980L7dqYiTjqKRecgik9Oefajd/9alcY729etKvXPao9x6EUu75ehpisSAnkng9qUt7fWmD7oxxQzfLnvSuGxIWHrSqe+KiVumelSYIbjrRcLDsj9e1JzwByKaW65H40nmdsUxDxjkUuQFz3pm7r3oUjaAeR64oHYlVgTgHkdaXI3dai6Nx+Bp27k57igLDhw3WpF+6T3qHzAzAU4HH4HvQIl4xQ3pnBphxQRtU80APFI+N31pqt8vBzSZBpXAdx26UgO3NJuHQfWlzlRnimA77wz+NDN0703nb3xQcdKYD9xbHahsZ6YpvI4xz2pN3OAOKYDx+nYUu7g0zcVyBkmjdg/WgCRW4XIzTvvcdO9RbgTjGaUfL6/WpAk9qOQfWm+vpS9MDNAD+D396TjcCKbxQB8xIJPtQA/cN2fz4pPQg5OaT27HvSYxz0oAVjyOcVheODt8Pwt3XULQ/+RkrbOSMd6wfHEo/sKBD0k1C0Tb35mSgDqppCkzDg88VGwDKSw698dKbcNi4b605cMg45/nVEoqOSJB6U+nMvOMZqNSBikUP3BcDOKXPQGkVupxuIBIHTPtWB4Q1LV9Qtb+XWrV7GQXTfZ4pFUOIuMZ29ec8+1IDod3bNLu+X37Cot2egz+NCuX+n8qdyScfqetKrZ4zg/So1Py5NKmN3qadxEjNyccU7krxUYO5hk5Ga521vtbb4gXUEsMi6KtqVU7P3e4FSrhvU7nBH+wKLgdNuz9e9LuJ6VED3JpGkMedozTAm3djxTWxzz1pAfM5Gc0p+boaBAqlR1zSLJuyCeaVvl/rTTyc4zVCJN3J7e1L14H40wN0PGO/rTuecc96VxB93GDxSq35elJyRk/lS/5NIB4wP60BvemH5ckd6XcD25oGLnDc0bt2c8H2pMjd/OhT1HSmA/8ADHtRu6mkpC2KBDwQB14pOOuOKj/DNKGyuKYD/wBKUHOQRUKs3Rhipf4fWgY4e9BJFIfrikzgdaVxC7s9s0d8Zo3belJkseaLgP6f40m/saTdSA596dwJAeMUisPWmg+/NKp3GgBW+b+tGffimtn0wabuww70xbkzc00ZC9aTcfqaN3bFAhaWNs/ypvTnFCfdpFD9wzS5I6nNN3H/AD3pMH0pisPVsd6T+L/GkHSlzx60BYNo5OTS9OM00N6Uc9e9Ah5/Kjd3zUZY/U05fWgBwakz81Jk01W980Ekpf8AyKA26m4z1/KjdtoGLil9/wAqaaQNmgB2fc0U3n/IooC556vzZ9RzRknG0EGmNyuV/KnqdtcaO4f6c07hsDvUbHnOPl7ilHLAA8UxEnKnk0vpzjvTN3r07ilyOCelACq23ORS7+lNLb+nNM8s9jQBJuK9ev0pd2WHf2pq/KuSMetO29xQAqn5iSMVIvzH09agOR34qVOuetJiOS07dJ8btec9IdAtIv8AvqVm/pXYn5T2rkNDy3xi8ZP126bp8Y+n7w11bNk89DRHU1mP3DAB5HamuvzAZ6Uc7fekbDZyM1ZkSL8pA6ZpFPUA03GF4z+FKvy5I6d6YiSP5lBJPXqaydYi8VTaiq6RcaFaadsBafUIppZt3cBVYDH41qFiyEqPw7UoY8N0NIDjo4fF194s1DSLnxba2sNrZwXYm03SlRn8xnUriRnxjYOe+6uh03w/c2E/nTeINU1M9PLuvKVPyVBVG4uItL+J1jJcNsj1bS2tI/8Aamhk3gH6q7f980yKPxytu9/NcaP8uX/smGByxQZ+Xzt33sf7OM0FHScKMdD6UvJ56DFVNO1CLVLG0voc/Z7qFZowR2YZGff/AAqnqkfi2S8mOkS+H4tPwNp1JZfMB752kAjPSgRrBTxngE004xnoay9J/tn7T/xNNZ0W8XH+o02IoQfXczk/pUurXevW90kek6RYX0Oz5pry+MG1sngAI2frTCxpKzbRgZGKnttrSKM43HFY1jdeIZL2OPUtJ022tGU5lsr1pWQ4yMhkXjPpWpC22QeoOaAOe8D6h5HgcT6legJps9zBcXl04GBFM67mY+wFS6Lr2oeJr6O8s4BY+HFB8ua5jInvT0yqH7kffJ5OOBXnWtfD3U/iBdeP9Dku2i0iwupJ7CzjkKCe9mRZQ8uOqLkBQeMsT2r0bw74s0zxDH5UUg0/UbSPF1pd18k1sVHzfKeqjHDDIxQFje3e+ayfGGp3+keFdRutLtZb3U9m22igj8xt56Ej0HetGxmh1GGC4t5knt50EkcsZ+V1PIINN0bVIdY061v7Rn+z3C7kLDacZPP6UCJLaaS4s7WWWIwTSRK0kZ6qxGSPzp+7cp2mszSNWk1S91q0mjEVxp92Ydo/iiKho3/EE/lWhtfcRjGOc0DHDPXPHY1IVyoxnGOKhiztzjk+lc94iuLD+2lgm8d3Xh24MSn+z4JIACP7x3oxGc+tO4WOqjjfptyPXFJjYxGOf5VyUOlaTeSK3/Ca6pqDj+FdTRQfqEAra1LWNO8J6XHcXs1x9nDCJSEe4kZj24BJqRWNQHHNZfi66vNP8G67eadL5WoW9nJNA2A3zKNw4PrjH41Us/HWlXl1DAttq8DzELG1zpk0aEnpyVwPxroJrVby1urVxlZoXjb1wVIqgMTxJ4407w3pmn3jo11eaiEWw0635lunZQcAdlGeWPAFW9D/ALX+xmXWmtlu5W3C2tR8sC9l3H7x9T61418D9JvJPFOj6z4huft+oXOjSW+nCQZFn5EhjeJR/e2AMT3yfWvcMkse/emOxLypJ7Vm6/4m03wzDFJqEzRmSOaSNUXJYRoXf9B3q7NNHbw+ZPNHbx7gm+UhRknAGfc1neKLXQ5tEkn8RQW0un2xBL3KbghY7OMcjO7H40hF3RdWg8QaNYaparIltewrOiyjDBWGQCOxq0xwaXyxDtjRVSJF2oiDgKOgA9MUwktnmlcB6noRyDUm725qvk9uv0pysdvqe9UBOrA0hb5gT1qMZ6g8UvpznmkBJuHr+FLgbQBzTDn169KQbtvAoEP/AIeuPUUv3VwTn3zTfmb+dIGIJ4piJMnmmcYJx+dCtQW4oAduyoI6+lOXaOpqPj6UuFOQSR6UwFYbuc4NHfBOTjvTEVlyGbK54NOK570AKrD8e9SbsdeRUIj9Tyak5HBpAO+9nJpWba2KTB/xppz1/CgBzNTl7kUzaevelBK0ADv0GceuKeG468VGzFmx2pf4RxmgB3b8awfG0cbadphYhcapaj6nzBj9cVtBjwM1z3j4FtH0w5Py6vZHGP8ApstAHVXGd7fWiJicc024+WVvTJqNDhs/rTEPm4Y4Oagbbw3TtVh1z3xULrtoAFI3AZyap2GsLql9q9mI2jfT51hYtyHDRq4I/Mj8KsbflyTx/KuZvNQt/Cnja6udQuVtNM1e2QrcS8RpNECCCexKkY/3aBnTAkewHpUifN7d6p6PqCazp8F7GrJHNkpv4JXJAbHuADVTS/EtpqniLXNDSOaC+0kxGQSDiRJE3K6n0yGH4UhI1bq8TT7Oe5lSaSKBS7RwIXkbHZVHU1jWfj7SbxlX7HrdqT0N1pcyfrgit5pxaxPM5crGpY+Wu5sAdgOprHj8f295/wAemn65ct0INhJGB+L4oGbSSpIodDlGGRkYqDUtYj01tPjlDsLu5+zqw6IxViCfrtxSwXBuo0laGSBm5Mc2Nw/ImoNa03+29FubFJRDM22SGU87JEYMjH2BFAjQVfm2jg9MGoY5oLqMSwTLNFkjfG2RkHB5+tZ3h/X5NWZo7nTbywu7dF+0C4jxH5ncI3RxxnI7EfSsSz1rRPBF9q+j6tqVvpKtePeWjXsgjWSKU7/lJ44cuPwqkI7BW+X+tLh/4TmsjRfE2i+IGmj0nVINSMIBc27F1GemG6H8K1R27UwH/ePX8KcMKw64pi8YI5o5zQS0PyPqaeG9zUPB7c05VC5INAyXdSBsj3pnGOlLgcEDFAhQ2PrS55yOtM5zz+VLuHOKBWF3DOO9KeaiADNkjB9aG+b6igLEm/g4NAbkk4pB8o9BScdMZoEKZNvB70qtxRgbh60oUDg96YDiQSBTlPB5qPIHOKVe+TSKQ/IXqaNw703jr0o+8cZ4p6Eg0g6U0Md3XIpNoDZH40rY9OaQDvyIp3XGab+FIJOcd8dKAJNwHGaA1M3E9vzp31HtVAPZv/103O7vTWOOlIvQcUAPzjjOKX9ajHfil3BetMCQMGHrR1GBxTFcNzilHpSAcGC5yacpz70xetO3dOfpSAG6ZpvmDPX9KDnvTWB6imA/cF5FJvHrn1pg+Xg9OtBIpkkit+NLvpq4XvwaM0AP3DoeaTjsKbmjOO2KAJN5OPSmsabuHFL96gA3HnFLuFM7nFFAEm73NFM3D1NFAWPPuRjn86dnA65FMXO7GetBc4469DXGdwu8r7k8U9W28diKbyQec+lLt60xBCxmViRgqxUH2qX09KYX9wATS7huIJwcfd9aBWHxt78+9O98VFu+Xmnfex6YoCwu4EHPI+lKRgYzn6UyNTtOadn0yQP85oAFy3AP4VJCx8wLUXPX1HX0p8BO/PvSHucr4XBm+KXxBlHIRbG3HbpGzf8As4rrm9K5TwW27xv8SJP+olbJ+VsnFdUMAn+QpR2NKm4fwg5w1Jg7hg5XFNf5sHOKcG2EkjB6ZrQyHK3GDwe2KOOnQ0m7dz2pytilcLCbivGeKcG3Y4P5UnbrzSrnkZ+lFwsTrtZkLopZSSrMMlcjBwe1eaeLPCvjPxB4j1JbW+vbCylkUWd5bar9ngtodq5YwoN8kmd/BO3ke9ehGTaxJxx2PFPEhYcHNCEYHg/RNU8KWcOjXFxHqmk2kYjtb58R3AQdEdQMHH94GrPiDwjoXii5t5tY0qLUmtwVj85m2qDz90EA/iK1ZOeh69hSK43dt30qgRkWfgrwvpbq9l4f020kQ8PDbKrD8RW3uLDHQVGPmHP4Z607dtXmgZMrZGO1C8Nu5yKi35wc07lctnOe1ILEEGl2ltrV9qiLIt3eJHHNhjsYJwpx6470t7pWnapdW9ze2MFxdQHMVwyDzEx6N1qY7mXjoT0NI0h3bTzigDFso5/h/eSTWNhPqvhp3ac2FmA1xZSHkiJSRujY/wAPVe1T+B7G70vwVolpfxfZ7yK3AkizkpkkhT7gEZrYjJjwVbFHmb++T70AY+teFYNY1SPUIdQvtHvxH5Mk9g4Uzxg5CNkEHB79aXxZp97feG2i0qWT+0bWWCaIs+DJ5bAlWPfcMg/WtZjz7Uik89qCSUuOoHPUr6e1Vp9L02+uPPutLs7qfG0yzQKzYA6ZIqToo704YAPamMik0vT9oA060BXptgUY/SrcMxiUBflKjAA7VCv3eKdux2oEWmuZHUguT+NFrIFkye4P8qrqR04FLu7ZoA47T/Buo/8ACv8ATLBESz1zRLh59OnZwRIQ5PzkdA6nB+taC67J4t02fTbddT8Pa46f6yS1by4ZRz9/G0qSMcdQa6PzGXPPNOMxdQCSQDnBouVc8r1XxQ3jXxF4M8My2zW+sWmpNf61a7SFhW3QlCCeCjswIxXoPizQI/F3hrU9HZxF9rj/AHch/gkBDIT7BgKutb2/2lrsQRi7aMRNPtG8qDnaT1xmpF44B5oEYWg6t4ov762h1bRbfSordMXNyLgS/aXAwPLUY2g9Tn6VLoup3dx4q8UaTdsrizkhntiq4PkSRggfUMGFbRY7QM1ia94Qi1zVI9Tg1XUNF1FIxCZ7CUKZUByA4IIIBJ6+tMDaX75/lUgA496qWENxDaxw3d2b2dOGuDGEZ/TIHGas7u1K4hzNt6cmhvm7/lTemSOmaa2TjJxg9aoCRSdo5yKfncoB6Uwdu/40p+XjOKgA3FRgdBS7jjAGTTeq05WxznBqgGs2Oc9Oop3DAYOaT1P9KQfKvHAzQA/+LPQHtmhRz/8AXpM/l2ped31pisSsQ3T+VNYnn1pFOV9MU3196BCktxtOMe1SFtwx3qIfd45FO9eOD70ASNlcZpnf0NKcj3pvU/0oAl/U/WjqvFMQEdwRSkgH09KABm6U5TnIpjN0I6UbvfI+nNADjjGMZrnvHy7tBs2zwup2bflMtb+7cormfiTcfZfCLTH7sd5ascdcCZKAR2Fx/rGxzyfxqJcBj29qfckeceMYOKjX5iBQIlxu5/HFRyEtil5yDmhsbhg81SGRfX8aZNHHPD5VxEk8eQdkgBAP41IykZxionYjAHBz6UWAlDbCPlAVegrFj8Oyw/EObxFFMn2a40pbGeH+IukpZG/JmH5VrByGI70R4BOelSBMrbOelPa4dxyxJFRZ3D1pNxznPFAh7NuxnODSrlSDnFN5pVbOPSgY95Gzy2QOgpHdLiPbLBFOB2mjDD8Mik7e1JxjrimA4LGke2NFiGONihf5Uvpnk+tR89Bn60/+HHU0gJNx4HpSbl6E4piuOe/tS+gp7CH59+expoY854PrTtx9KY2D3qhWHqflwfypfp0qMnC8HNLuO0UibEqnvSfSmlgvHek3E9qLjH/L260m4baVffp/KkpgG/IG7j6UuBuyDSfd9/ejr7YoJHZHpg0Aj3IpA3XPWm+hHHagCRj2yaEbrTVO7JFGcfWgCTduHTPtScDp0pFbnv0pGb1wPSgQpc7sdqdjpUZo3YXNAxw44FLn35+lGcjijJ70xDgRt96KZvA6cn0pQ2cY6UAPz68+1ICO9Ic5o6e9AC55/SgtnijvTeOaYC9Pp6UAryQaPTJpFfr2INMCVfWk3j6e1MLDjmjr16/SlYB275ifWnA9+/tUeT0/rS7jwM0AOPzdsUg6AEdKT36Uu4etArCq3br9aTqwOeKTp3yaWmINx6Uvpmkz+Jpq45oAc2O3HsKdn5hnmmgelIc460AO9SDQG+UU1fvY6mk2v3P4UASbhRUf7z+8KKB3OB3beAwPanLg8n9KjXkdf1p3K8DofWuI7yTj9eKXO7k1GufoKNwB68/rQIl/dspVuh600tsZc0LwSc5p+4MuBRckFXCnkk800ksoxkGnbqOozmqEOU7sn8DS59/oaYvcdDS/ex60DF3nkZzUlvkyA4IORxTetSW6nz155yKOgHI+AT5niT4iyHPOtqv/AHzAgrrtw3HsBXGfDFd1149l7nxLcL9QFQV1/lbWJU9T0pRWhc9x/wB4Zpm794QRTgvQenFMWPn73T0qjMdkrnjIp/mfJxTMFucfjShRtOD97t6UhjjgKMcH25oDd6bgLHgD7vSlDL6EHHNMB3DAkj86VcKOOPWo+fWnqB/DyaQrDt20570n3XJIpvXp3pAW6H9aBi8tjr7U8fdAzzUaq27OMetPXO7B6fSncB38OKdkbSck0m0M2BwaQKcZzigAEhGO1Iv3i/4U7ywQefypq/eIzx6U7iJh83/66Zu28n1pGfuuCO2aj3CQggZ/pQBNJkYwc0u4Ac+vFN/iHP4UgwWIBA9qYyTdyT0pW27Tg8elRncVwopwYHIpAPjxx2obhi27I6Ypuflx096CPmB7elAD927aBzTu+PQ1FkKvA5Bpx7Z4PtQBLznruoPUEHn61Hk8H+tO3fhz3oAf/CR/Wm52mhm/D+lIfm4pkj93zcdKUuM470zuOeaXOM55NADvbpSrhf4t1MT7x547U4Y9eKAsOLfkaRpAGUY7Uu4Lz2qKRuVB5pgSMQen5UvmAgCm9fejo3UZ9aQhyyBeAcUrfMAc03hufakGAOv1oAevzYOeO1KWLL7UcY684zRxz2OM0wFDevWgNliB07U0ZbIzTcbXO786AJN35dKd1780DHBzz2o2jOc4JpgBJ47ZNSFvlAHBqPJUUrdjkYoAercZpfemL1znjpikOd2ByKAJFbOT6cUzcN23oaTLDJ68/do3e1BI5m4wKVm6d6QsDgcZ9KTbu4PA96AHAn0rmPifGr+Dxuyqi/tCxPTHnJXUdVFcz8UF834eaqAfmVoXB9Nsqn+lAzqbiQGd+M/j3pqsGwabMQsny896TcMcCnuIk3Bcn88Uu9fxpi9cgUSJmRcNgUbASE9c/pUbf7NP53ZoZu4Ge9AEHIIx+NKpByc8fyobO4E8U3hc/N1pDHsxXBx+lJuyfb1xRuIXBpI8dzj2oJHuxXAzg0iyZ47U5j0FIVA6cUwH7tvWkZuDx37UzccUu7j9aBhu3LwDnNPRj+dNX5eQaXG7kjmgB6460nmYPHNC/ISR37Unf3oAkEnUdRSFxxQffr60n44NBI4MMH3NL2pMZGSKDxg55oGLu+U8Ubvak3buo78U5cHp2oJBZG9MU4E+nHpTd3bt6Uue4oAcecUhwq89KRPQ9aGHPcimA7b2pq7txzzSqB659qC3SmSGfmHHFKvPBHFIeePWk5XIBoEKWOetOGRnt6Uwe/NO79c0FAX20qNuHzdabuHQ0FscfzoAf0zzQDTUb1pVbcOOtAh4X25pMbeD/KkVjg5o+9jHWgBwJz0qMFwxB+7SnPTrSc9aBEnSjnGTzTe3Wjd26UAPH5+1J9KTd27UnKnrmgBep/xp3PpSeuaDxj0oADnPQflQfYcUhb3zS7u5NNgLtz70bdvQ0npzg0u73yKdwA0g9j/9alz09aTb155ouA8/h9cUwLtJyaduxwaD8y+9FwFXjvg0crkUzHHB/CnZPGaQB04pAT65o7U1cHgmmA7c3pRRtX/JopXA895k3LnbT+fl7etM2jdnqPWn7dvANcZ3DuQFPJzwaQL82SPoacue45+lNDBs5GKAHKo3DuDT9wzjBJpVOFGKT64oJHhQCPSjA3Zx70bs4GadjbyKdxCfTpSr1PP40m7pnj0pGbcvHPpTAduIwc1La/66M553DP51CO+ep6g1NZR5uY8njdx+dALc474XMskPjR+gbxPe4+ny4rr264B4rh/g/mTQvELn5fM8Q3zA5znDgZ/Su23Esf0qVexc9xd3/wCsUcBt2cmkRDt6/pTG+Xjkg1ZBIrjoOPrSE/MCDgZpqkcjGadu29eAaAHbhtPOT+lO+926+/61EuOe/wBRSXV8ml6deahMDJDZwSXDrnkhFLY/SkwHyNGt0luZ4xcspkFuXG8rnlguc4pwbrxXmc2hmH4dSeNrkeb4tZI9cN5yDEvUW6ekYjYrt79fSvTXfeqyKB8yhh+IzTGG7HTihSWyTyetLHGzckAYPNB+XPpQIUuF69aQsdwOTj0p6wuy7gmcd8Uhhk67CB9KQC9OaXzO3J/nUW7Bx271KqCR1XIyelUAZ+XI5FNWUeZisnwz4u0bxlHOdJv455bd2Se2PyyxMCQQyHnr36VYvtSTTtU0qykibfqUskUcoICoyxl8H6gH8qQF/j7x4qMErkL+NOXAYgnP1qlrms6f4a0mfU9UvI7GwhwXmlOBz0HuT6U0BdB3cng+hpe5yv401HSZI5Y23RSKrK3YgjINOLZbGRnFAC7t2D3p/BHAwaiEgCjI4FPALgY+bHQ4pAPP3euBRn7ox7Uhjl24KcZqDUrx9P0m/uobf7ZNbW8k6W+/Z5hVSQu7BxnHpVATtj1yaVZB93v9K47QfihpWrW9g2rWdz4ZuL+FJ7ZdQwYZ1YAqUlHynOehwc8Yrb8Xa4fCHhu61lrY3UVu0W5FOPkZ1UtnHYEn8KQGwGyF4yafjd7e9JMnlyMqt8vbHesLxF4207w3d22n+XPqeuXK7oNJsFDzuv8AfI6KvHViKAszbEhGe3vUnNZOg+IYfEUF6v2S40+/sZfJvNPugBLCxGRkgkEEcgjg1phvl65FFwH9MClHXJ/OmN94EUufmH50wH9GIpeAwxTPM+Yfril3Dp+tAD93Sjg0bh0HU0jdeDg0wHbqb94Zx/Shvu0hY9OuaBWHZz06UvT+HimYbq1G0oo7j35NAiRvmGKT7vGOKaq7Vxk5pQx69qBEmdvBFDfN170KenQH1oyTnHIpoAX5fX2p3G3qaapGOetGOOmP60wHDH0pOfpj0pPTI5FJuPUGgCUNjn+dByW44FNXAI/nTmxuAJ4pAL/CDnml/wA8VEr+hx+FSbs8dB3pisDZ9acrd+30prNwOCcd6Q56npQFh5x2rC+IAMngPXMAApAZP++SDW2qjsBms7xfD9o8F6/EvJkspR+O00kI01k86GKQfxoGx9RmkVDtJJqDTbgTaXYyKOGt4zj/AICKsY4NMBOflxx+NK27jI6fypqsNpUDle1KGfb03e1MCXcNvqaUZXI7U1VZmUd+lcdq3irWL1dYvdBS1Gl6NkSNcIWa+kU/vETBG0KMjPOSKAOvkHTOQagU8tnkVJa3kepWNveRf6ueNZV9QCM4/WkZfQ80h2F3Z+lGcemajUncVP1p+1drMzBUHJZjgCgA3dOeKd97OayLvxNoVjIqXGt2MJY8K1wmT9Oa1o5EkRZI3V42GQynIIpiF6jjnPamKpYknhQOWPAqRsZGOhrltXZ/E3iSXQFdotK0+NJtQ29bh3BKQ57LgZYd8gdKQHULIsiq6MroejKQQfxpd3y5B5rn/C9vHpd9r+m28axWlvdLJBDGMLGkiBsAem4NW6vWgdiX3HFG4M2e4qMN7ij7vOc0xE4Oee1G3p3FRK2R1yM04NtUZOKQEo+71pM9eKZu+U/rige1Ah2PlzTvMxg9eKZvGRnp7UvA4FMQobLc/hS7unamd808ml1EOHqKdk7fpUasCoIOadup3GPpN3AFR854oBxgmmIc3WhcDn1pPvUL3z09aYrCr6D86fnb2pm7396TflcmkA/d8vT5c0Bh1qPd2/rTlxnrijUZJnqRQM/401mx0OaasgPH9aNQJN3XPSnK3vzUO7HPfpQrd880CJc+/NH3TTdw4yc0hamJj/u0bvmBHJ703hutDY7cUCHNle3FKG7HrTQ2VwaRc59RQA5m59aVWHfkUxumc0bg2OeaAE6cZqRWwPWomxmhW28dRQBMWHUUcmo/5ijI3YOcfyoAeJMDjil/Q9qjVgvQ07du98UALzzQrFeD0phal3dDmgCTfSZ59qaWHY0cHIz19KAHKe3GaaxPIIxTBJtbGeKdu5FUAvFFO3j+8fyopAefj7zdjSbuuBQrd80m44U9a4rneyRWO3HTtzTo8dh+dNDEjJHPel8s4ByQe2D1piHLnOMcfWnHJ5/SggcDPFG35QenagBY8HJ6DNP3Ee9MBO2nHleDg4waCBWOV6daVfu8Ypqn/CnZ4PYimAH5eg4/lU9kf9IQjkZz9aq7g2RkgVPp6sLpPXPT1xT6DW5w/wAHz/xSOoOOfM1vUGJ/7btXZs2VIAzXGfBtf+KA3g/f1S/f87h67LJ/+vUoqfxMVWbHTFDsW6c0c4HNJ0/nTRA9flXpz3z1pjM3YZX9ac2DjnjrScKOue2aoAXd1xnHeq2r32lR2lxY6rqljZQXcMkEn2i5RDtZSpwCevNW1k8tgRz6DtWHbfDnwhb3kt7H4a05rqVjJJLNAJWZick/NnHNFwOf8D6injDwXrvgzzUubrTbNtNTUrY77W7jKbYpEfpu6BlzwRV/RfiTpPkWVjqSahpepxxJFKl9ZSom8AA4kxtIJHrzXYpIsUQijRIo14VY1Cj8gOKe1w8i7XJZP7ppFHnPxasbmaxZbDTtS17UtQBgt44SRBYpj55SAQC2Dldx5P0rsvD+p2mqaRB9hkkkFqi28sdwCkyMoAIdT0bitBWO51WQxkjCt6HHWuc8NaRrtvr+o6rrp02OSe1itlXT9374oT+9kz/EQccUxFrVPBdjq2oTX8uoataSSKBIlrqLxQ4A67eg4HOKq6f4b8P2ckckOsXcr5yvm6xJKG/Atg10FxbxXlvLbTxrNbyIUkjYZDqRgg1kJ4I8MW6jyvD9hGezLCMj0pAjdZW3fN1zUluQtwjY2kHjrVeGNYVEaY2KoUAnsOKlj+vOfyp3Cx55ofgzT9ZbxDbIG0fWtF1y5NpqdrxKkcpEyhv76Hew2mrfiS+8RWOg2lzq+nwtLpWp28/9pWbjZJHv2Oxj6qSrnPauhsdJuLPx5r2oBQNN1O0tTuB/5bx7lbj3Uj8hV/VLBdW0fUtOkICXdvJD83YspAP4HFMC5cRlZn5yueD7etcV4k8NWnjjx4+lawqzWGm6St5b2kihopJZmkiaR1P3toXj0JzWv/ZfiC58OaNCmuJo2q28SLdzJbrOsxC4PB6c85qvp/gua28UW+v6h4k1DVL+KBrXa6RxQtG3O0qq9A3I561KDoN+H+n3fh2w/wCEWvb06jNpkETQXLLtaSAjA4/2WDD6Yrdhvo7rVb/Twri4s0ilfcOCsgO0j8iPwrP8Q+E7fxLeWl2dU1TR7m2jaITaXOIWZSQdrcHIBGfxNYUXg3xhouvT3+jeJLPUoru2jgkk8QRs8saxszKF8oKG++3J55poZ2EV1FP56wypMYJDFKEOdjgA7T6HBH51meKUb+zYpm8TT+F7aJv311AqHcDwAS4O361l+E4b3TvGni+z1FrZ7u6Wz1LzLRGSJ90ZiYqrEkcxjNdYcSLsdVkXurrkUg0OPsrjw3uG7x3eahN2aTU1G4/7qgCu0t3Xam1vPhK8Mx3bl+vemxpAuQLaAcfwxKP6U/I4AAx2x0FUSzy2zWLRfixY+GdStEudNksLm3so5lDxSWrsJY0IP8UbLIufQrWv4l8GXml+DvEttoWoAaZJp9wG0jUQ00Sfu2I8p87k9hyM9q1PHPh6fUtT8J65YRiS+0jUU3qOGe2k+SVfwBB/CupCK7SxSqHikVkceqkYI/I0wMvwHqH9veEvDGoSkE3enW0z555aNSf1zXL/AAbskn0K/wDEc+ZNf1XULpb26f76LHMyJEP7qhVXj3qxp2heKvCPgnQPD+gzadd3lqGt5dRv9wSGEE+WVQcsQuFx7U/wR4A1Dwfq+oX0viabUYNSZp7qw+ypHB9oJGZIwOV6Hjv1NSUtUXGZoPjBPGrHZf8Ah5ZpB6vFMVU/gGrpFBPAGD/OsXxF4dudW1Gz1nStT/snWbOKSBZXiEsUkTEEq6HGRkA5Bqe30rUda0i607XLq1S5nGyO50sPEUP8L/NyCCBTJNTlWOaXaG4JyD+lYXgfWrrXvC9tcX7K+p20sljesgADTROULAe4AP41u9GPOBQAqt2zz0peRgZ4+lNTDZzwcU7n/wDXQwHtRz0pm/PbHtSNIBt9e9AEnLUD3/CmYbPB/D1pxbPtVAKMqCM59AaPvdab0wOvPWn56YpAOz3pvPamqpGecjrihm2njmmKxKMnHQ4pGbb1/Omqx4DfnSkHA5/CgQ736n2pQ3mDJyD71EuR2461Lu7kcU0IV2+UHNA5xxTZFMi7Q2D605F+UUXAdsLDrj2oC7cDrinK3Xj8KDkHsaYByFBzSKG9eKTHTBpy5oAMdc9adjj+Qpm7djjinbgBzSuAvB/n71Dqy7tB1NWGV+yS5/74NSLjr3qPVF3aLqSjvayD/wAcNBJQ8IubjwjochOS9lCxP1QVp87hzx/KsfwWx/4Qfw9u5b7BCCQMY+QVtbht6Y9qY2Cr8x5zS78DI47H3pm73bPepECtz09c0CJrXdIzIvDMpCnvkjiuB+G7m7+DOI4912sV3BOh6/aFdw2fcnn8a6h77XY7uSOHSrV4Ff8Adztckbh2JG04rF8O+EdY0HxXqGpW99Z22lak/nXekhXkUS4wZI2OME9+KBmt4TmWbwnoziWNM2sYI3gc4xjH6U8atG/iSfRvKkWdLRbtJc5SRSxBA+mB+dUv+FceFnvpbl9FgaZ2LMWyRn1A6VT8TeCtR1HXNMvtC1oaDFb2720yxwh5DGxUgJngYxSC5tw39rNql3pyThr61VXlt2BBCsMhhnqPpVmS1hvbaa3uIVuIJUKtC4yHBHQ1xuqeF9R0DxF4e1mwub3WZlLadfNdyeYxgc7g30Vv512pO1vlJHOaYzhtChvNJYfZvhba6bBk7pI7qAydeoHf867eNvMhRzC0DMMmJsZX2OOKe0nuTnnmm7i2d6lTn1oJHwqGkTjjPNc/4OgaNvE8kqkXDa5cBy33toCeX+GwrVnVtL13UdQhfTvES6LYLGA0cdkk0zPnruc4A6djUeg+H73RdQ1m7vtZbVpdSkjlZmgWLDJGI84XjJVV6AdKAEtZI7XxxqdtJKkb3lpb3EQdgpfbvVto744/OtqSB+TtyCMgVQ1zw/pHie1itdY06DUY4iTH5uQyE9SrDkfgew9Kq6P4X0/w1LmwkvkixjyJruSWMfQMTSGSaxrkegvZtdwyLZ3D+U90pyIZCcIGHYEnGfp61qMCGwfwNU/E0Nld+GdVgvrmG3t5rSRTJK4AHynB598VU8J6hLq3hXRry4ytxPZxO6n+8VGTTDobK/dx2zTlyy4HNRqO+Tin8BuOaBAEJHPFLyByaN24HtikVvl68+lADlUgnoQelO5/CmbhjjkUDHXNAmSHnnrSH5lPOTTV+bHOB6U4Y7daBAoC4H5U/nt+VR7Tk0uMjmqQhy/5xTm+lRg4qQN7UgDB544pPUYzjnFOqPp396aAVcMMinLxnI+hqNSeucU/duHvR1AUEc5FLj5uKjDFhzzSsx4waYiQ4HXpTNo570oxtwTg0Yx3oAVVwfenLxUfPUHmnqRRcBcDpzSkDAoz09aRjkjtQIXgdKSjikHy8UCHjj0pM47YpN1JnLc0DFLe1JgdaCQKQkN3oEPOOhORScD+lM9qVVHbn8aAHq3J4pfpxTPxp33l+lADc45IxS7t3PT6U3d82M/nTlPUUAO/HvTWzn0oB60E570ABB4xg0bQf6UoNG4dO9AB9P0oUn0waTAz0xxQG9/rQAuf9n9aKNp/2aKAOBC9SMk08Z445pkfIznPA4p27pjpXEegP3HkgUq7uDn603kZPrTlzjJHNWQPX7oJ5z7UbT3/ACpF7elKqn1JFIYo+Xj/APXSjIBPXNGfTg0jcYwck9vSggft3KDnBpCwwB0OOaQ9sflRkL9apDFC/L79sVPYH98jHJwe3Wq27H1qW1kCybj0Ckn8jUspbo4v4Lv5nwztXyMSX163HvcPXZAZ4zg/WuF+A8g/4VBoYzuBac8cZ/fPXbiRVzz+J60lsOp8TH429SfSk5Uep6U1WDLkZwaXcB71SIAZ3cinhQQdxzUYbLbsnFPGOmcU7j0FGF/DpUnHJxx1qHcBjnrTlPTn60hWFbuc8UqsVGaPlbKk+4pvHc570APU5zzlaVlyOTk0xeo7U48DnpmmIadxVSOD6GnYz2wR2pm7rwT+FOXJ96BoerZ6/hTlJySDx61EpYNSqwKgj16UDJd3GByfek3dSBk5qNZD1INKv3sjoeaWxJJyx3fn2pSM4OeajLBW68mkVzkhhg9veqAlVvm44OOaGc/dHXPTNMQ8lsc9MilkPy7gNx7UAVm0m3bXk1jdIt2tobIgfdZC24ZHsf51ZH3t2cdfwpvmbhnGKFIfsQetAEuWIPrTo8ljng/rTAcDoTQM7gSMUATcrnnAqPfhjn8xR53PIyaZ95jxjFMaJ1bAwvFDcfL7VHuAGB0oZiOR0pDH+gJyPaszVtY1nSbgtY+HW1uLAMbQXaRNnuGDYxz3Ga0NxJ5HP86XzWHY49jTJMDwHpOoaZpOpXGqwR2N/qmozai9nHIJFg34wm4dSAP1ro3+bGOnvTWbGc8/WlVuPamVuOVhyMU/j1qPPQ9cU4sOp4pMkVfpTT9c0qtkEAU39DmkBLzgj25pN2MfT1pm4nr+lLyVxjmmArMeeP8A69KPm46CmFmUcg4HBpfu/WkBJu+vNNZgrYJyfWo9xHTOaXliCV+oNUBN0z/KjlT0zk0zcCAaduLdRyOlACKxHBqRc8Ht/Oo2LMc4/H1p4bovtTuKw7pgg96evHJ5qNcgDuPpSklenFAiVeeM0fxYqIMy8DAFOycghfrmmIfg59qXoMk0xvbihmb6+tDAdz6UpUPxTNx2jH5UAsBgcj9aSAlVeBjhfSoNWH/FP6tz0tJcev3DUqs2MYqHVGI0HU/l/wCXWUf+OGmBneDTu8F6CduwmyiyPT5RWr6/rWX4RfzfB+hso+VrOI/+OitZRnnvQDBSOAOn1pScfdpm05IxmjBXGTTETbsKMnJpyybu/NQMpZeOBSr80fXnNAifO7J6ig5x79qhEjKOv/16euSDzkfWgAMhjPBwai/iwcCntnuMimCNjgn8KAHt16+1GWxjH4VG27JzTmbcM96AHLkHH500njOPzpvzN1JPoKYzMGwTj6d6AH7dwyCM+lJy3U456imKSW6496dzk4NAFDV/CWh+IriGfU9LgvpocbHlzkY6cZ5/GtRtqqqoqoq8BVGAo9APSo9jdzTuT160FBx17VJyOPzNM4HtSHI6UEkobg80cE5xj+tRMpxwacvHHIFAD29xz7Uwdvek5Y459qdt9s0xDgx4wadu9setQ87sj7v86epLHqAfWgB+eMilGfTNM5YUv8OQetAmOB6gcU7PGahbjnPSgbsAr+OaBFgZo4qFd6nPan9V4NAxSOoozkf5zSMpYdeKaFDdDzTEP7Yo6c55pu3aO/FIwbdndle4oAeD3oz360n8IJNH3uhpiYoY7uPwp69evNR9OnWhc4z3pATbsc9aRvmXOcfSoyvTrjtQOGyDTAdnuKVTuyBxTfagIKBEit9BQevNN2+lR7SvAOQaQEue3SmEfN0z+NJt47/Wkb0PeqESA84pePXFM24IOfrSMCxzSAkzQrbW6c1GflxSqBuAH+FADzg9gaMFT7Un4HFNxu470AP69KTjgnr7UbRg+tM2YbvmhASA0/A545qNVxzQDt6/hSuA/jFRsD24p5wetN+lMBN3+0aKZz6UUAcQuWB4+X1pV4X1z3pqpgtjIHenL95u4H61xnobioQzHOcipTnsOO1M9wfxpdxyB1FMkfkbemfcU7dnoPyqFiO/HpT+VUEcinYVyTbz0xxRxtPOe2aYWHHJ68U7arLjpkUgG9WVR17GnHO4gj5ulNGBnB5HFOCnPFAhMkDseelOjPMjY42MefoaZyvOM1PCUMc5PI8p8j1+U0nsVHVo4L4EqIfg/wCH+PlkWaTp03SucfrXbsqcccVx3wVXHwh8LD7pNsx5HrI1diuBwD+VNbDmveY9dq4OKM54xxTVA+YDJzzmlA3d8e9BInPHGBT15Xrj8aRf1pGyPmGNveqFYOcjH5ZqRVJ+Y9Ki3fLk8A9DUobsT7UMAXlsgUvrgZFIqs23HORxUnlPsO5cDNSMjz6Y+hp27oDUTc5APfG6lQ4XuBTFYfgjqfpSnjtim43HI6ehNBbjB6ZoHsO5DUvH4U0NnjOfXFIxPIB565oEO54APT1pVXOT09KYAC2Bx6ipNw5HWgaBlO0EHn3oXjqM8Um7byASPalVWbk8GgVhRxzTgQenWmgbmIHHr2xTQpToaoBzYDEgc+gpVxkkU1WBzu5Pal3HjpnFAiQYLHNL6cVHuOAfzqRTuX1pFCEZyPzpF/dvkfMMdKRid3Wk4JzjnpTQx5yDngUjcY7k/rS8twVwO9KsLPjgkfyoEOVsj0pWb5cd6i3beARinjPHegAOed34n1p2e45pOoPt2pYjlscUC2EVdrE5PPUGpNvHHPrmmqdrEEZpcbvX86BDy3pTG6g9qULjpTdoGMigY8dN1GWxkUzGO9KWP0NAx6sOp+lJz9PamsvfBX0z0pNpyoPNAh5+Vc9TSrgLyMHtUN1e2tnJbR3FzHFNcuY4I3YBpWAztUHqcUJIJEDKSoYZ+YYxQBI3ysvqT2qXnqpxUCtt+bqcYxTxJ7ZH0poRJu2rSq3HaovUnp2NKr9eOen1qgJFf0/DNKsmQeue4pifLgYyKce2cE0AG44FSx898VED93k085oAerbsjqaXbuUnoaZu5+vpQG3ZzQQSZOOelHSo26DbnFKq7c479aAJOmaivN39mX+0AnyH6/7pp3C8k8UksYmtbmPoWiYbvqDTAxfA8v8AxQvh9l+6bKIAY/2a3F6Zrm/h5J53gHQG7raqn4qSp/lXRKxXikhknmbT1oZS2KZg4/kcUozwoPeqJuPDALjP5UgbPf2p0dm83Coxb2FQX1zaaTGWv7+1sAvLG4mWPA/E0CJOcjHWn7iwPaubk+I3hKNgn/CT6XK3QLDcCQ/+O5rejljmjWSJxJG4DKy9CD3pWCxPk9O46U5RuXOcVFuzg9DRzuIBwDTAcxHShjwPX2pCqqME/kaibzlkwseYyPvk0ASbuD61GzH0zWV4i8VaR4ThgfWtTjsmmJEcaoWeTHHAAJPWseT4jCaNn07wt4i1OJV3G4+yLbxYAzkmVlOMe1AWZ1u0diDS59GrmrPxB4jvoYriPwnHbQyAMpn1JN20jIPygjke9dGrFlUmMKSMlM5wfSlcZKpIxmkUGm/maUe44HQ0xjzzyaAu0fLimlsY9PpS7uOnOaCQ57ilUbRjPFNbPXkUN8wwfzoAce+OKVct6Zpq56g5pwYL2xQArDcRng+1IM5wOaN27kUZO7HXvQKxJ1Xims3Y0o9cY9aBj0oEJ7flS8bgc4FLkLjqABQ0fTBwKYhwcHrTt3Q4pgJ49e9JyWI6UgH5PQc0bdvSkXvSYP4etMBxJ20nDAZ5pCBkZOKAN3Tj1oAXnp360nPXPHvTgoz6Cmfd5PINUAD5ue3rUin86Znvn/69OXDY7c1IDjTccY70jlSMHij71NCHKB1NODYzUfv0pc+lMB4bmms2WzQv603dhumfegRIWBwKQjdRx1NIDwfrQApxtxjFN3daRvumm49Rk0CHKdxJxj6U4fXmo03OCelP3YPSkA8cpjPNH3QMHmog3t9KdupjFLbetKp6800UuMdelAhdxYjJ+tG75vUUfzppbv0PrSsBLj5e1IW6VGrc9Kf9TxQAu4etFM59P1opgcSucnI5604Z3ZFMbLY5/GnD1PI71yHex/qB19DSEcdefSm7st1+X1pxzu5Pb86CRN2cgnB7U9ir4ApvAJxz7Um7LYxge1UhDnQoykYx0xQuf72fVaXgMPQUMfmBGD2qShdo6nGO9Kp9P8aYqnqfxpcbWJHT0piHctxnHf3p+4R2l23YQSf+gmombGOpqDUW8vRtUlwSEs5m/JGqXsVH4kc78HAP+FR+FVbr9iB/8eNdWFAYcn2rlPhHlfhL4RHOf7PQn9a6jcTjnFEdhz3JGkEbKG4z0xQW4LdD6Co9zN1Gc9c0Ll8k8VRA6I7fvHn61Iec8/lUar680/sQKYAq9MHgnua57VtT8Y/29PY6NoWm/wBnxqrLqeo3Jw2RzhFGcg5HOOldBGu0HncvvUu8rjGSDQxbbnAal/wmkfizQtHv/EtnY22qx3DCbS7IBlkiCnZlyeoJ59q2ofAdutxFcX2saxqksbBg1xdFI8j1RMA1P430u7vrTStR06Mz6no96t3FCpwZUI2SJ+Ksfyq1eatNa+M9M0lo1NrqVpNJEw+8JoyCV/75OfwpDNFvvHHQ9aFU49c9qha6t49Sk03zsX6Qi4MDAhvLJwG+mazfFDeIUt7VdDutKsImLC5vNUJPlDjBVeAT170xm38yjJGB346UmCzAkcVyPhvVrY6g0EvjQeIr3GGhtYVWFT/wEHH4muj1PV7PQLF73UZ/s1qhVS5UtyeBwOtFhF5evpUU99a293Bay3MMNzOCYYZJAryAddoPJ6jpXPQePYNUkKaRoesarz/r/JEEX5yEVxv7RXhH/hK/htFqjWz22o6NcRXgeOT97DEHAlCuP9nnj+7QHKerzbo0ldYmlZUZliX7zkDIA9zVPw7rVr4g0ex1W2JNtdRiQK3VT3U+4IIP0rnNB8Ma74dW2n0LxU+qWTKsiQa4vnAqRkYlXDdMdc0eB1/4R/xF4h8LTvGHWX+1LKOP7jQzcuE9lfcPxoHsXbjQPGOoak4j8X2umWbOfKS101WcLngMzHriqHhxdc16znmg8X3ha1vZrKWOawg+/G5U/dHQjB/Gu0RisgOfzrhVs7z/AISvxl4etNQk0iS/mt9ZguY4wzeUw2TKuTwSyjntmhAjuM7WVHkVpcDPIBPqcU7tnPIrzDWdB1TSPGGlSaZ4cWXTNOnWaW/kvVN/qTeW3yR7jyBk5XvivQtJ1i01/T0vbJiYnLKyOpV43BwyMD0ZTwRTEXtpYehqT7O/BAbBHpUMZC4J6CuN1W18F6brk66nqt1JqcjeYbZ7uZiobkBUXgCgR27Qsue6+9cb8Xtd1zwt4Ni1fQZbeOW0vITcC5XdG0LHaQxHIGSMkcitPw6ukvJJLp0N/EMY/wBKEqo3031qaxpMHiLQtS0icZhvbWS3fP8AtKRn8Dj8qB7HC+GfjppGsaTYXWuWF94Zku4w6yXUDPauD3WZQVx9cV0l14ujXxJY6Tp6W2oLqWm3F5Y3STjy5poiMxEjOMgg5rm/2ebqVvhNYaVfp/pmkSy6bd28oDYdHPBH0IP40fEDwxpfg+20zxho+nw6fc6TqMUl0LcbEeCQ+VJ8o46MD+FIZb16+8f2PhXWdVnk0XR/sNpLc+Rbo11K2xS2AxwB09DV/RPD8Wt6Ppup32tajq32y3juF3SCGMblDY2pj1rsGhhkLRyAS20qFHHZ0YYP6GvOPBN8fAHg2x0PXYbo6ha3M1raW8ETSSXEIbMbJgYICsBnNMSdzv0jSGNVjARVAAX6VBqGtaboVvFNqmo2umxStsV7mUIGPoM1m6V4pW+1NLC70jUNGuZkaS3W+VR5wXG7BUnkZBwea2pLK11Dy47q1huVQ5UTIr7T0yMiptqMxW+JXgxHKf8ACW6PkHoLpc1q6XrGn6zCbjS9QttQiHV7aUOB9cdK5xPiB4Y0qaeDUtLuvD7xOV/03SyI2x/EropXB+tbWh69oWutLJpF1a3GR+88hNre2RgGmI1F3NnnvmnYJb8e1YOt2/i2W/C6Hd6LaWCoMtfxSSTbu/AIGKit7HxurxNc61oc0SsPMSOwkRiueQDuPP4UySP4meNpfh34RbW4dOOrGO5hgNusmxmEjhPlODzkirfhHxxpXjCZraJ5dP1eD5Z9J1BPJuY/fYfvD3XNUfi5oMniX4Z+J7ONczfZTc2uz7wkiIkX8crU66TovxK8K6Dqmo2azyzWcNxDeQMY54WKAnZIuGHOeOlMq+hpaDrya1d6vaS2zWN1pl81nLExzkYBRx7MpBqpp/jKxm0vXNRvyulW+jXs1ndec+fuYKsOn3gRgVjeHdIPhP4oX1ib+81GHWNKS8Sa+l3yGSB9hG7HJ2sOevFcl4s8Ey658XPEFu80gtZNDOr2Nkf9VJfKpiEhH8RXap/Ggelz0PwfqWr6/Hca3qKGw067CjT9Ndf3iRDJEkno7enYYreyOP6VleF9Uh8Q+GNM1OJ96TQrvJ7Oow4PoQc1Y1bUodG0G+1aT99Z2lrJdM0ZHzKqk8H3xSIerKWveFW8QeJvDmqSXvl2mkPJMtmIsmSZl2ht3YAE8VsSOdxJHXnrXL+PtUv7f4b3WsaM0kNzCsF9tAy3lBlaRf8AvjdmunF1Bcww3IdTDcKrRNuGG3DIApjDf+8GPl7U/n1xWXrWtW2h3mkxTJJnUrn7HEyjhX2lhn8q0dpDFScgdaYiwrjbSJ165xzSLgLwOvvSKvzbsfNSAfvG7I7enSpN28jpUSqNv9PWjIGB0zVATkhcYpN3vznqKj3FhzSbtrAjoetAEqnByTxSr94kH8KjIDN6e9P6gY5xQIVmPGAOaeM96ZuBXP8AOjceQBzQIew21LFhuM9QQah3bl5qWHCuvYdDQI5r4fqE8H2sR/5YyzxfTEz1vs23j8axfCO1bHUosY8rUbhcfVyf61sjHagY7n5RkfSn7gI2XcylhjcvUZ7g+tRbuhxUgUbcj8KoRzL/AAz0++b/AIm2ta/rYPHl3Woukf02x7RioG8JeG/DvizQrS28P6VHbahbXS7prcSSmaPYy/O2SflL116k9zisTxpY3F1ptjf2Nu1zqGk3kd1FCpw0iE7ZFH1Rj+VISZr29vbRNsgtLeHH8MUKqP0FODc+nYVzXibT9XuLjULiTVbqy0S3TfBZ6JEDeTHGSCzd88AD8af8O9ebxD4bhF1PI+qQ7hcQXKeXcRKWOwSLgc7cfMBg9qBtG3qerWWh2El9qNylpZxYDzPnaMnAz+OKxIfih4ZupNttdXt1n+KHTrhl/PZXSqq/cZQVPZhkflWMde8TR6hPCPDUMlirEQzpqCqWXsSu3j6UEmvHJHNCkkZO1wGXcpU4+h5FTLEWXkgDHc8VXhkmkjV54Pssp+8m8Pj8RWRrngfRfFd7Hd6zDNfrHGI1tjcOsPBJyUUjJ56n0FMDYvp7O3ETT3VrHMHAiaR135J6DnPPtVnm6823mbKTK0Tc8EMMf1rnLD4eeFtJkMmnaDZWc+CFmVNzKexBJNb8KnbGGH3RzigZyHwxuHl8BaXBMcXWnh9OnUnlXhcx/wAlFdUsLEZA46muZ8Mx3Fj4y8aWUkDLaT3kepW8n8LebEokA/4Gjfiadq3hfVvEWsXEtx4muNAsUCpp8OnyKhZscvLuHzc/w9MD3qCkdI2c9e9Jgq3/ANfrWN4P1K+1jQ92oCNtQtbiayuXhGEeSJyhYemcZrawdx7Y70wYoHYc05WFRbRtP8J9aVc7cmqIH/d69KXtyaavP0oXlRSAcp+XuPpRuBXPWk2n8aXB7CmAegz1pPUnjHSlPy9jTchsHt25oAduzxwTTt2W6YFAwT15o4FAhwbOM0oYqQOcU1V+anZ4Ixz60AKZAuAeaVmHPOaQ4x92mfxZ/OmSLyvJOakDfLnNMPzd8UKxHHX3zT0AXd780u7Oaazbcg8ik3HsOKQD3fC4pu4MoB4pFO3PGfamtnmmgHb/AG5p+5WGehqIfez0NSgDd0xQAn3sZFIWZGOD2pWJ4K0meuaYEiuCM9KR2HHU1H1xgfjS7hQA89KF4AI49aQd+abuwwz3oEO34FJyB/WnMR1FIPm4xigQo+tR54IHWn9QeMimc9c80APVuMGlLbT04qLnpnFP5Pzf/qoGJu5I6U9cdKj3YYg9fWnrlRgUCF5B6cUu496byR70dun4GkgsAb5uufak3BmwBSYA5ApVGee9MQqscccY9aUn5hnpTGYrQWOM4oAl3D1oqHa390UUAcd1+lCtjBPc+lBJxgAZoXdtHHJ61yHoC/LuAAZT9ODTm5A9fQU1vu9Kbn5ud2em6mRcf0U4GexHQ05WGM9j09qjGVORyM806NsEcf4UAOXC857fnSr83HbrSfebkZH60pO3A5pDD+Lr3peCevrj1pNxzkjr3Wk9eT+FArAykA5qrrj7fCuu84I064J/79NzVlmP3QPvVQ8RN5fhHxAx5xp1x/6Kah7FR3RQ+Gvy/DPwoO39mw445+7XQK2OvBrC+HKkfDbwplef7Ltz9PkFbg55PNSnoOW4v3gefoaduHOO9NCbSMHjrihmHBIwPXHSqJHcdvyokPQD86H+bnoaPQntxQA5VyAPSnqeuajyVQbelO4b6UwHibauF/zisjxZ4RsvGlrZRXdxeWT2kpmiuLGUxSgkbSNw6Ag1rDHSjfg96RJwuqeE4vBeseHdd0cX93It1/Z9+Lid53kt5RwcseArgH8TXX67oOma9DFbarZRahBDJ5qRy8gNgirf2gxglfxprMXJ5qhkdrZ2mmxLDZWsVpCo4SFAoH5VN6ZCsvowyKauNvpTsbufei4rk3nMf4vl9un5VDeQw31lcWc6Ce3uI2iljboysMEH6in7TSc9jmkOxHY2cGm2FtZ2i+Xb20awxoWJIUDAHPtTZNNsp9Vt9UeLOoW8TwRzZPCMQSvvU3JOeo701Gz2wQaQD/cU5sMyuVXzAu3fjnbnpn0pgJzx/OjO44GDQMpazoun+JNPaw1OH7RAxz1KsjdmVhyD7im+HfDdj4R0hNM05JBbK7yFpnLuzMcszE9STV8Lkkng/wA6evzEelMBEAxzzUq7VYthN4GN+0Z/PFN4U5HfqKXbn/dp7k7DmkZgASxpq/K2aUttX+VG4NjJFMLlaz02x0+a9ltLWOCW8l864ZBjzJMAbj74FO1TS7PWtKvNNv4vNs7yMxSR5xkH37Gp9pYgjb1wRR3IIJoENtbePT7S3tYC3kwRrEnmNubaowMnuazvGWqalovhfUNQ0i0W91C3QMkbKW2qSNzBRy2Fydo64xWkfvDggH3pyyGNwVbaw70DPG9J8XeNfEXiLTNWuNITWfD2jNKTe2VvJazztIm3IhlOTs5zjrmvXbHUoNStYrq2ZjFKMgOpVh6gg8g+1WWuGOck5pmfMUZ5P0oC9yVbqReAxA9OtIzCSTdsUEcHAwaaFO4ZpWz1zzSQ+gB92QW5zzTl9Ccc1Hty7Hr7U8PtbocY4qkSTRsACGGQwKke1Zvh3w/Z+E9CtdIsWkNpbl/LEx3FVZi23PoM4HsBV7r/AI07hsAjNAFe80u0vNS07UZomN7YiRYJVJGFcYZT6jgdfSnSWNrJqUGpPHm/giaFJMn7jEEr+YFSbS3Xn1FD5+X0FMDn5vDOpaTq91qHhu8tLe3v38y802+QtCZe8seDlSR1XocVx3xB0vWPDng/WPDWn2U+oaVrjJHZy2oLGyd5F86J+4jI3FT2zg16iuckluO2akVikfDYXuKkdxFRLZVgCK8XliMowyrKFxgj0rltJ+HNno+rQ3Q1S/udPtCzWOlzuDDas3Xb3IGSAD0rpGG6QMDx6U/+HJ/CgRzPxKsri68MWt9Z28t3d6TqEGopBCu53VG+cKO52k1r6N4ktPFUMl1a2t9aIrY2ahatA/5GtBWMZXaefWiaZ5GOeaYxFfkdjTjncefw9KYvc9qd75zSAUttXnk0oHPoPWmeZ0HINO3lckAHHQE9aYEjFc5HBNR7Q2BngdqjaTzD357CpR/CehpiFUY4p6sSDjgUzOSe3vSKp3f4UwHsxDYH61Iv8P8Ak0xacWwcCgVh3970qaH/AFijOeagZioHp71LDJ+8XHTNILGB4XX95r5HQ6pNx+Irb7Y7Vzvg1zu8RHO9v7Xn/DkcV0OQ3ru9qYMUt8vqelC/dxSc9MYIpVwFxQSP2hucUbjt60hPy/4Um3pzj2NO4rAm4MvOOetcxD4V1CHxwdY+127WbM8hZw32khlA8ndnBjBG4Dsa6b7xGBmgMN2f4aXULkg75HekaRg2NxA/Smsck+vb3pFz2/KqETNjqD/9ek4I44xUXO727VJjH4c0CJF+brTt/wAvHBqNSSDgUi/L7c0DHM7Mc1wnxK8A3vjK8tzbW2nXkD2rWjNqJY/YiWz58aj7zY468YHvXdEmjJ9/apGcX4J+Euk/D1IRpmo6owQHzIprxmikY/ebYeASeePWuxOeo6j1oLHJPU+hpu7dk/pVDuJjHSpFYflUYHT2qQgn60gYoyvfJo98YpNppRnPr9aCRc0m6kb7oAPWhAcc0wEbpntQigHgce1OZaaPlb+lJgOjf+eOlP8Axpn8J709W4pXAF9zzTh0OPwqNc7iCKXlTwKoB6465xSdaRs9hke1JuP19KBDyw24JqPzDux1pxXJyOtNz833aBDs4XgZo3A/4UA/LyCTSUAPHTk5pB7jntTd5Wl5P0zTuIeMN7HvR047Cm7scdM0pb2496AHbt1Nb5eaX04ppbA7mhACt/dGfalYZ68UK2ccfWl9veqANx7DB96a3DDJpWOPalYjIOPakAv3un5UvoelIoIPsaRiSR7UgF+7znFNZc5zQWHTGKTnr1FUINu3BPNIV96ceRxQyllHY0DI1HIzUu49e3vTAPbnvS++M0gHM/zCg/N/9amlfl6f/WpeR3zQAuTtHrTgD1pi+nb6Uq8cYzQKw7Hc00jH0o6U0MexzQxWH+b7frRTfMaip1EcacsAODnilXI7/WkjwVH97ptPFO6+xrnO4Hz1zxUe7c/A2ke/UVIwOD1zSKNvT8qAFVgyjnmlZRjFC/LyeKMfTpxmgLWBeCw59jRyGAJ7YpoJHJ49qVMk88igByt6Z/OlHOaT6DntTecdefagBTjavOMVleLpBH4J8Syk426bcD/yG1amevy89TWL44kA+Hfig7eP7Mn4xz9w0pbFR+JD/h8Nnw78LDp/xK7b/wBFrW1uCnqPyrG8GY/4QHwyueP7MtsHv/qlrW/2snPehDlux2Q+Sp+hpGbd8pXnrnsaXb0IHIoX5iTTIDftPI5NP3D0+aoh8wGecdKk4Dds0AIzY2nt/KniQMwx97rTDnI4A74qT7qHnj0xTQDgS3PtQueRn65pm4FeDz6dxS7sqO9Ag43deppjfKuG3DnrS7vlHbdzT2Utjt61QgVu/WjduJwMetH3V6Uob1555qB2AuOh5p+49uKaVPfHWnohkbGM+tADVY9qamFVu/8ASszTfGGhaxq82lafqlvdX0KlnijbnAODg9DgnnHrWirFGPpnpTsMk3AYFLxnpg00SBu1LwFzn/69ADt4LDjnpS7zjj8eajGQucfXNH40WESFt3QEmnFu5HPtUMbZ/wB7vUisf/rUxMcGLADHNKGC5B6d6The2R35pyqF6DIpggXBzxxQWIx1FOHXB/limMW3EDjHrQAMz7vQ96G+UjAyMUZ3df5UuTwMZFVoFhu4tzjgetSK2fp1pue2fwp2QOO3epCwu7jnpnNJuLscc+1IF9DnvRHy2f4vagaHKCc80jNzkD2pR3GcU5SQ2eg70CGs2OBnHXFPWQt1GKTbuORyaccjluTVAKcnOefcU77qg859O1M+7069eaTOG69e1K4hzZOQBTc/LjtTtx+tNweADikAfwgMMj1p2duM80wsyluM+opGO7gcH2oAerbiRTgpbOfzqJZDjHTHSpMnbxwaChOeOMj1pdxUgelH3sc1G3egQ8OKcMkZ7e1Q7RuA/wAipTnvTEKVPYc/lR79D6UmSGGTxTm7Y6+tHUABDL1p24bgOp9aNu3v7UzlcnHB6UATNJleOvtSeYc/hUeSTkceop/XtVAKSePSpYSS4XHf1qNCT24qSNgsgOe9Amc34PUeZ4lVWGRrEwfHrwf5Gt8ZVyBziud8Gsv27xaNvTWpMkcZzGh/r+ldArEE5HU/WgRMrFuTS7vlznmkVh360N1J7UCFJ604tkdKYeFHcU5vlA/LNAB1560zleR696d83Y01e4HPqKAsOD7mOARQN2/sfcUm7IB70jEscgmgB7N0zznvS7tvpmod3rj0qVu1Ah/l98kUuSOvSmFweRTN3c8ntQKxNg9jTemSaaGLDjj1FPZjtoGGflpnpzn6Uu7bxTWH4HtTTGKjZzz0pcknJODS/eHTnvxTWU5yRzQSPyfqKN2cHGKFYYpxWmAmBj1NNbIzxTt3ek6f40kAinIOTgUfxdaPrSt7flTATDbvajdliKf2phXLbttIBysVUc5oZjn3pVbPNJ/EaYC7sNgnNKjENzSZFN/i6dqAZIfY03nqePel/D8DQpPQ9KBCHO7ik+970ZxjFIufTj1oEL9f5Uo44zx25oJwOKRctQMlA3Un8JpMnjNO60AN2988UpIGQc5psjMmSo3Nx3pCxbkVRI5fzo565OPTFMVzxgfL1qT+HPT0pMAbp17cUz2JzTifb8c035hyTSAeD/nNL3Hehc44oZeev/1qoAwMcnmg/dzikJ29OKb5nJpiBVz3wacDnnNJn8qQNtNIY7I/yaPXGeO9MYkEHODTt3bpTAU4bnoabnAprMemM0oJ+lSA8fMtJz3NJn05o/HFIBzYbofekOB170xSe/FOzz1zQAvme1FJkepooEcnwSM+tIPm46imkkcZyaEbBA6Cuc7A37enX6UqsT1//VSbcdDikYd+S3tQK5JuG3jmo/vMD6cYoC98lqevuMf560DFGCnIJHWhPk47Hpz0pAM8EkNQpAznrigY71pNu3ABOPSl65HU+wpGz3HHQUCYbtqkHv0rnfiRIV+GPi114ZdLuOfT5Tiuh3+wA965v4oYHwr8WkcH+zpVOfQik9io7o0/C9v9j8I6BbscmPT7dMn0EYFaS4VTjjtUWmqF0fTB/dtYhz/uCpQ3zGhbCluw3A/7vTPcUm3JIPbuO9JuVRtIwc805cNwe/NMQEbMYOCe1SrkA8VGwwuOtOU7up/GgB6KWwB3omaC3h8ye4hgRf8AlpJKFA+uTSx/I/rmuUi+DPgeW4mmTw7ZyXcu9hJcbpcOQecMSOvOKANKXxp4ZhkEb+ItOEmcAR3Csf0Na8bpKiyRuHjYZDL3Fcz8K7SyvPA+jzJpdhbXW1objybdE/fRsUc4A4OVJp2jePIda1CFbfS7uPR7iV7e01Z9oinkXOQFB3AEhsEjBxTEdF8qjHPrUsbCTkcVD5Zyct7e1PXK5ABJ96oY7J5BOfek24bj9ayPE3i638KLZ/aNO1LUVuCRusLcyiPGPvY6ZzxUEfjRL7Z9i0LV51b/AJaSwCFV+pYg1Abm/ux/hXJfEq6upLTQNAtbhrRtfv8A7JNNEcOIFRnkCnsSBjPvXVWrySRiSSIwP1KFgf1rz74ya9a+DdU8B+JNRZotK0/VHiuXVc7BLCyqeP8AaAH40aiRsapptjZeMPBWkaVbRWiWC3Fx5cQxth8vYMn3Yjr1xXUrk7s5GDjmuN+HUj+J2vfFE80Tajqahbe1VwzW1qOUQgdznJ9zXY28haMhxtfOCP607lDz1BHJp7R7UXkAH7u44yfQVBe31tpOm3mo3j+Va2kTTyP6Koyf5V57L4YuPGngbUvE2tNIusSWzX2kxI5CaeqfPHtHdyB8xPrQFj0hc+Yc8GgN1yp/Oq2l6l/bGh6bqC4IuraOY475UGp13FT3Xvii4h4YKmQMn+VOVvl479KjI2ybQyltuePT1rG1DxppGlXz2ErXs16h+aG1tHk689QMUxdToR8wGfvUrP8AmOg9azdO1yXUnwml3lrFjIkukCfpnNaTdgRk+uaLgZHiXxFJo8ljYadZ/wBpa3qDEW1qTtRVX70kjdkH6nAqDSNS1aDxBPomtmzluvsovoLiwDKjR7irIysTggjrnnNZniTXtN8H/Eiy1fWbqKy06XQ5oEuJm2qskcgkZc+pQnA74qbwRHN4gur3xhdfu21GJYbK3BB8m1BJTOP4mzuPpmmB1K5bDe9PDbcn9KbyOMjrVXXtatPDGkyX96XaPcI44YxukmkbhUQdySaTAuLhlyacuF78Vj+H9dOvLfQXFhcaXqFk6+dZ3JUuqsNyMCpIII9O4IrVH3efxpIY7p3IBpFbr37UnRiRyo7UoJ9MiqEPUfL1z7elO5Of0amKo65pQ369qBiqx2kjrTlJYgkYBFJkdM8Up4GDz6UAHHAHP86CPzxmkz+dO568iggTcN3zHFG7+7yPQ0bRt/pmgL8o5wB3oHYQg4PNLt+U5OR2oPzdOvUUm4+nFAAVMhweB609VCZAPWo1Ugnnj0pVkCtjGaBjmO0DPrjimyZb7vymnbvpim7qBjVH/wBen7tuMciog244zkVIG9R9aBEgw2O1DY3CmKfTj0p38XOQMUAKGIb2+lO3Y4P3T3pi+5ye/FO3++fegQvTPFPX7ozUBkYc5IPp61LG52nJ/TmmxDi3HHUVLCw3KcVX654xUsZO4Y49aYHM+C1H9peM17/2w3P1hjNdEq9T1PpXNeEZR/wk3jhQuFGpRkr9YI66VjvXjp6ilcVh3Hp7Zp24L1+7TWfavJyPrQrg5H6UxEgzjIzjpimXE9vZtClzdQ2zTHEaTSBSx9Bk81NbKJJAoPBOK4nQdCsPHkOv6xrEEd5JdXFzYWvmjItoYXZV2f3SWUsSOelMR2mzZwe3rScbs9DWP4K1KTVvBei3s7F55bVSzk8sRwT+OK2I4zIeDx6mkAbSPp1xSBscflVax1K01K3M1heQX1vuKGW3kDqGB5GR3FSXV9a6baTXl3KtvbQrvklYEhR68UwJThuozQ2F71yy/FfwfcYFrq8l8W/59bKeXP5JWvpfiTTNZk8u0mmLkZCT20sJ/J1FAGl9Bx9agu7+20y2ae9uYbS3U4Mk7hF+mTU25sEhSQK5O+to9T+Klnb6jCk1lDo5u7OOQZUz+cVkOOhIXb+dAzqbO6ttQs1u7O4jurdjhZoHDKfbIqYMelc21unh/wAaWv2NFgstZikE0SLhftEYBVgOmSuc49BXQckgdx7UCJDjIwtNZj1xge1LkqPQeuKbuJYE4FAEinvnnFO3bSPemxvn60ffwCenrQSPGOD+NGe3OKj2gEZPFOVtuB+tMYpbbznNBcLg9BR/P0pqrkHNIBXb0HvQWHv1pu0Llv5UvHY+1Owg3EsTSqOvf0pu4dKcp5wDmkAm/aeQT61Irbv8aj+pyaenynrTAN3r09aNwPUGmSNtxjr6GhfmAOKaAfnnPSlzt5z+FM3deKcDkcigAwWYEHHqKePSouFbrg0oxzg5oEK3oOKNw6jv1oHzd+aRc+vfigY9GDf0pWba2DUfcjv2p5YnqfzoAdndz1pjMF7/AJCncbT6VHxyRwaZA6P5h+FP+7nrj6VErFc9/wAKfvx2xQABucZ/CnHH4VAGC53EZ9SafJJyoXOO/pSAc3an7qi3g4/wpzN+OKaAc3IPNNUYwDzTWcCm+ZnHrVAPZhuwopA2M5GPalEm7p19DRUgGaf2Peoy3ODTunqcUXATlTwaUNuwDxR94YpnfPWncB+ScgAfShcbeufamFc5OSPpTlOO9IB3PTv60MxXjFN3H6/SkZt2O2aQDtw/u/qKKbub0/SimKxyGd2OMH3p2RgUmdqnnilVQed2Tj8q5jrHMu75lODTd21hkY44pTlMkHj1pqsS3HQ+9ADg34H0pd23HOTUa5I5NODBVz+IzQMcp3Akc/p0NO3Hp1BpjIrEMeg5wOhqRcUANXdnkfjTlYc46d6QgM3XIPrRg4AzgD2oEMbOOBkVy/xfYf8ACpfFR6BrMqSfciuqPCjniuL+N7NH8IfEZywMiwxDb/tTIB/OkzSG6O2iUpZ2gJ6QoCP+Aim+XtJwM81L92KEHp5a/wDoIpm5mYjPy9MUyXuG1WBHUd6YcKMKzH61Lge3A69aSTCrn+dAIReeTS4K8561DG3Tnn3qUN8o3Hn6dKBEhb5ueakikKSBx/CelQN2OfxpcfMCAA2KBEXh/QbbR31FLWRlivrqW7K4GInkADbfbPNeeeAdQmh8K6JDdWNx9k8PyTwXc0YBUTpI65x1ICnJ+telq2DuB5rnb7QbnQU1HVPD0P2y7ub1L2402WQJHP8AJskVTjAJHPPdaAOhjmSaJJoXWWJxuV1OQwPcULzyG/D0rJ8PWj2Og20Mlu1qNzSC2dgzQhmJCZHpnFaKs4kHy4VhnIpgTXDXf2OZbKREudp8rzc7C3YHHOKwLe28bSDN1qejx5/5ZxwO2PxLDP5V0J+bAOD7VD9njY4YEkHoT0poCvp8GsK2L+6tJkx/y7xspP5k4rD+LHgmX4g+Ab3SYPLa7EkVzB53TejhgD7EAj8a6yNAvTkfXpQ7SQ+WUQOGJ3EnGKYjj7vwvoWra8mky2S6Vqi2S3kN5YN5Mqtkq20jrt4POetW/Dt/qVrrVx4f1xkub9I/Ptb+Jdv2uLoSV7ODjOODnNXvFXhWz8WQ2hlmnsb+zYvaahZvsmgY9dp7gjgg8Gsvw/4I1iy8RjWNX8Wza3cRW0ltaK1qkIhV8Et8vVuBSGM+L11Bb/DPxJZtcww3t3p8scMLyhWkYrwAM1J8P/E2nePvAkU2m3CTxtY/ZZ448qYZPKAZCOxFMt/AmleGjHfwRyX+rmYeZqV+/nTHdxkk9B9K19JW20m9ntba0treaRjPJ9ljCb27swHc+tIZhfDfXdJXwDoEdxq1lbTW9qsLrNcIjqy5GCCeDxWN8QvEVjqHijwn4ek1gW2i6l9pnu7i1uAokSGPcE8wHgEnnntXTzfD3wlNfNPceGNJmuZiXaSS2UlmPJPIrk/iv8HrHxZY+GI9J0LT5F0nVY7l7Hy1jjkgbiUEDHGMEjvimPQ3fhK8V5oepz2hb+yvt0n2BGlMjLBxjkknBOSM+tb+pt4n+17NHbSorLaMzXgZpN3fgY4/GvMYjo9n4i0SPwbpF9o2vR3qwahZwWjw2xtwSH8zjYcdQRXssrL5hCH2phsZdjbeIY3EmoapZ3CZ5jgtSv6ljWwDuPt2qCCYyxBijRMTyrduamVSefWp3IZ55+0V4Rh8XfBvXkkjEk+noL6A4yQUPzY+q7q0bjQ4dE0G08TeG4FtLmK2jubm0hG2K8hKguCo43AZIYc5rr76zt9S0u8sLpN9rdQvBIvfaykH9DXOppWveDIIotCEfiHS1gSA6dqExjlTamzKSAEcgDII6+maBpnRW1zDqFnBeWzCS2nQSxuO6kVz3iuMN8QPh/8AaB/obSXgBf7n2gRAx59/vYp3h/R9d0f4faPplnd2unaxbxKkslxF5yIOcgAEc8/pVPVvh1eeILRIdY8X6rcFJkuIhbpFFHFKhyrqu08g9807DRqI5X4rXkAHN1oschz3McrD+TVutH5SO0mURFLNx0A5rL8ReFbDxQls969wl5agiK/s5jDMmcZG5T0OM4PpT9Pt7XwfYtNd61dyW4IDXGqXO9Rk8cnpSaBFqxvbXVNPt76ynS5srhd8U0ZyGB/r7VOtct4Pks4fEXinT9NuYbnThNHexG2dXjjeRcyIMHAORnHvXULypPT2NMBwX5uM89qcDt7cVGrHceaU4YkrwR1waLCHqDjr3o/ix7U1XCn2PHWlVueOlMBQeoAzS88Ac0i8jrilXvzmgQ5V6jp35FNc/NkfjS4GP8aQsVzgZoGIv40M2cYpFYjPrQzY5B5oFuOwC2ehNG7cvbNMVi33utL8o+90oGJt56Y9Kdjb1GSeuaFIBBzz2NDdwAC3bNAIjXDdsd8U/dtGSMUxWLqAfl7mnKpXk9PWgBy42jvTwoLVHu6ZOc0uegxQA/gn3pPlH+FN3Dk9qHcDnP6UCHNhtuR06U9QKj4GD3NPXke/vQIeVxztwacrDeM881GWA4705cMy8gc1SA5bwgo/4Szx0D3v4W5PPMCV0+3GfX2rnfD/AO58ZeMgMB3ltZDzwf3WM/pXQLIWyDxznNJAS/KyYZeKesYyBjqcfSo1/wB76VJk8HHf8KoRz118SNC0zU5LOUakbqF9pWHT5ZAT7EDBrJ8B6yjeJvEmj2+n6lb6VeySX9jdXNpJEqySL+9iO4cfN8w9ckV3y3Ug4D/TmlkuZGU/MTz60iTzjwt8QPD/AIV0Ky8P69ff2Lq+moLaW3ukZd5HR1bGGBGDx61r+O786h8MPEd5o8jXZOnzPF5IO58KcgcdcZrrpJPOVFmSOTb0MiBsfQmkjK+YVcKFIwQBximtxdTzL4Eaxp3ibw/qGtadHBZJfzI66bGfmto0jWNNwwPmYLuz3z3r0mOQB8Yz65rz7wD4PuPDUkOnx6MbWPT5Zok1SaRd0tu0jMsaheSBkfe6V3fliNiAwAznmmxlLVNU8UxXzw6ToOm3FqANt5eX5iySOfkVSRg5pscnizaHntNDdj/DHNNkf8CI/pWoN4AyR04pfMfcPrzmkA1YrmSENMyW7kAOFYED8T1rlPHmpaF9nsyNfjs/Edg5l097VTcyqx4ZHiTJZGAwQfr2rp9U02y17T5bLULdbm0kI3wycg4PGcVHo+h6T4diMek6da6ep6/Z4lUn6nqaYHKeIvEU8ng3w34nvtNm0qa1v4Zry2ZGYwo26N2AHJGGyO9b/hzxbbeKJ2axsNQS0H3bu6tzCj/7obk/lW4lwedxzkfnTmmkZWKkM+Dt3HAJ7A0CObhvL7Q/FCafe3JvtM1XfLZXDqA1vKOTA2PvDByp68EV0DEY6VxHiG98T6xDY6bL4T8iRdQguF1K1vlkhiVHySQQGyVyMY713Nwo8zI5FIYzAbpS/L+PuKOo7ZpoO7vx9KAHEdtuaMccfjQM7Sc8etIzeh/EU0SO+7yOaTd0/MZpFJ247+tP/hA70gIyoLZPWlKDnjP4UOvY9DSg4AHYVQCKemVxT1Ao+vIxUYYc/wAhUjsOB5PFGQG6HFM5GfrxTix9ee9UIN2eq5H60D5eB1xTVYqxIp24djQBJxn3+tJuyOeKTrweTQPujvQApb5fakHrSlfwpob/AD6UgHhuenFH3eR+NNDbqTzPL+ntTAkPUU1vbn60m4Pg9jSFvmHp60gHqSwA70MoC9M0AYweoFKzZ780xMbGwPSgtycDHfmm9GyBigtknA4pkjs7l5Uc9ad8pHSk7U1yen5HNIY/ZzntSjrTS3GM4+lIfu+vrQMcy9TnNM+73zSFeOWoAOMnp1qrkixrnIPFSdvX0zTFz60Bhz834UgFLUu7Pao8nPWnM23HGKQDuvHQUEhqao5+vehm9On0oAA3JyMU8fkO1MVRJ1/LFB9M5x7UAG0q5549adjgA8+mKarD3/GlYkYxQA/8f0opm4+hooA4/wAsKck/NUm09OvrTT2zzzijn+9z7Guc7EO2Hv07ig4VTxg44pqE7vm644pC2cD7p64PWgdhykYORTyw7c1Fu6YOTnFK0ecHe2R3zyKBaD/M9ASKP4emR1FM42jtk96crDGTwM0AO2/lQucH9KTOfehs7s9Rjp3oJt3F/p71xPxzdm+Eur45BntB/wCTMddqG9Rj8K4f43EH4XXaBdvmX1muPrcJ/hUy2NIfEjumj3LF5gydi49uBxT+2D1+tPvG2yfJwARwRxUTED3GaolrUeTgjnjvTflZSB8ydOe1IWC4OTt6U0H5epz60ANj+RsEYA71Nuyw64NRMwXkHk/5xS7t3H9KAuPJOMjGfTNO5x05FR/6wehPT2pVY7eGyw70CHNyuCOD+dKuVAA4P60iyFic/eHfHFL07557UCE+83zZz796cqqoIAxinsqsvXp71EzZbPt6UxkqqDzT927krmolztx0IqQMenfrikIOjU7d7CmNIMcZz6UiycYHIpisS9fpTVwW4HPrTd4bgkg09V2jHOetUIGJY/X261GkcaztIIlWZhhmA5anq3UbefSk3HChjgjoaCkQNaxzSFpQRjvnBqSJTHxuJGO9GfnOePQilZhzzyP1pAPmuJWTarZbGM+v1pnO7kZoaQKARz7UqkhCT8wNADh+VP3dFH6UxSFYYBwe/pUgJ+n0pCHHggY/HFKG25qPcWx3o3bSck4xxTGP3fKD17H2obgZHT1pquOe2DRuxzgn2pkguVXDHJ9R3qSRIprZ4Z4kmhkGHjkXcrD0INR7uOhx/KkMnHfHTNG40V9L0XS9BheDS9Ot9OjkbLrbxhAx9TirSsBkE8io2kKkHG4YoDK2TjB96AJV4Yn1o2jqP0psTfMf7uaf/KkG43J47/WnM22QcbgehFGDu4poG5ueMGmGpN23HqOKTJXpTQ21tuDjtSg8ZoC4vPX+VJhWBOcH2prFsgik3fMOP/r0CJAflHHNDHv/ADpu7noRTm+7igsRSDjPJ7UrLycUg44wR60biq4/hBzyaBB8uwjPPag/LjPNDYYDjpzTdwU4P4UADosg3Ecjpg0oYt1yPTNNVuwFO5/+tQMDgqcDHtRjgfnRTWyOBzzzSJHAbmOCaXaNxzSbumBg0jZOcjjtTCw4qSBjjnPWnliMccH86iVvmznntT/Mx7e1AEhYn8fWljI3AY/Co93GRQjEsPbvQIwdNwvxE8SRr0e0tZM+/wA4xW/uUdgKwrP938RdabGS+nWpz9Gkrd+nHtVIOo9cr0p5yWPYdqjVsfSlZScEAdKYEy9AadxhsVHuJXgbTSLJx0OM0hEnXp81KeGHrTI85znAzTmyCCOMUyR4f5WyeTwKYG+Uc57ZpN43YAzmkI28g80CHH0PPtS7gV4JI+lNkyyZHB9jSKQqjtQMkXBGdvNIxKnoOlAdue30pjM3QEfj2piYRud2Rxz0qUMR0HH8qgwyjGeexp6s24bgAR3oC5P5jKpBPWofMLcLx60FiWApHwduFpMZIOmB0pdo4I4x0pivwc0m45PrQBIX4wR26Uzd+fvQCW601149PpTQD2IVaTdnBzxQoHOetMP3uOlBI+RgOSeKcWB6Dk9aj25XnlTQwDYOcfSkBJu+b+lK2CvTimBievPvRu+UjoaodwXjNL+lRKCNwJJ9KkLen50CF/hI7UgbY2NuV9aRWO7B/CnDO4UAG47hjkUF9pAA4NI3D5o3HGAdxz3oAkVt2APxpFwOOtMR+RntxSAHcO39KQEn0/WlOOlNLH0z603d8wOe3agZKD7celHGQe/embi3tzQeT1+lMQ7cc+1O3Y7VGSevalU+tAh33unNGM9KT7o4496TcfqaYD8k9elNduxPHvSHJHFMJYdfnX6UdAJPM+XjpRuPHHXpTAu7GMe1BY8YIzSFcfgquePpSK+7pxSbmPWorqZbK1nun3eXChkcIu5sAZOAOp+lAibAznvS4OOlVdP1G11rT4L+xuFubWcbo5UPB9vY54xVna+wEcj0oAP4sEU4NnqKhkzt4JpysDwSfpSAcp247ilPODyM03lSM8Cg/N/9emA/b8x7GlCn1yfWolbjA4NP8wrigBfvD1p3HIzgVEJN3B4pcZ6MaAHeWP71FR7T6/zooA5fceO/vSLnnIx/Kk+6MdO1LuG305rnO0XcFwT69c5xSEZYkDBprP09KcOmc5oATcf4vlJNO3AseAD69qaSV5zkd6QEuSB27UEjskEBeRSj1IpFY7MlskHHNG07s5wKBocowGwcj19KVsdCfoaarbMgjOeDk0u3rz7nigYnG7np61w/xvkP/CvY1GTv1WyXp284V2qklMc7T04riPjY23wPYKfuya5Yqfp5o/wqZbGlP4kehX/y3DjPfOahVgvHTuTU94ALhwOMGq+NwpozHsRzg5J560nIwcfX2pNo2E4OOuKQMcjA4pkj0bdnIwT1pdwTAYfTbTVI5y1OXJPTFACbtreg7U7JXkLkZ7UjZblu/FKvyjnkelADw27kc0gZs4xn1pq54xgr3pxbaPftQA45C8CkXg+9Cs2B+dNYK+OenNACq+4gjOPepA/zDuBUfK45/I06PAFADiT1Xg54peQwxgeuRSbsd+TzQJAvUZpgPb5VPpnmkjk+Xg8Zpu0bOTkH0PNIvHXr60CJN/zY60m3dg5PHrSH5T1yaUfdpoY1fldx971FL94HA5pAoyT69xSt83GME96QDQCzcjJ9Kl5+hzTB93BxThj6d8UgFOTwT70rLvOM47g0hbHOfxobK9TzTEOLBfakVgzZP/66QPu9M0g4yeg6gUxDtp3e/enrkHpzTepP86M7Qf6UAh8nTNMGfTimySbuOhpvmMuOSaYyVcqRkU1/U0btvf8ACgNu5z06UrjHx4XqM9809suNy1CGKkgjvTlzkDOD1qQJF689KD94Y4o3Hdjmgtnv7VZLHL1HH1oGcnjFMAGQadv3e44oEDMV6LuFIOU7Y60bS2RnHfOaBhVC/pQMerDqOv6UhbNJ/DkflmjdwGJ6e9Idw4GOSR7dqVnUYyOv8VMZeQRx6+9K2DnBP+NVoSH3unBHFN4UEnlqVjuUjJ/lSLvbggdeCDSAc21cEZ96VfmNMMYYjk5zn2p7Njjr7CgdwOR9TSc7u9OGWU56UH7wxQO4nTOf8Kbu+YAnml4J2gHIo2jbzxj1oATPyn0pGcKgPWl46D5fQ01s7s4yO/FADm5XI4p8UhVhn8qbkswwacvHXnmgkwvOI+JpjG3DaMrHjriVsZ/Ot0ndkEYHriueUg/E667FdJi2n6yNkVv7852nB9KBj93Hv6VIrHjnFVhzkkEmpmICeop3ES7tygsM0Zz14HrUa/oe9OwQvtTuIlU446mkaQ9uRTVYEe1JuHmHrjtQIlUk4z96m8q5yBj2o3Dt1pwkGcHpTAQs2SOlOUk5HbuDTejHmlyAuec+1Ah6jnDHPvSDAz701WwwJJwaGHJ5oAFbqMUqr68/jUYU84bnNPXIUgnB+lAhTztwMj2oL/Ng9PWm5/A0z+L1FAD95ZsZ+uadx269/SmIxXjHelOOtAwPTg808e5piDHT680vGDigBd27/wDXSbgpxik5z601gevUjtQA48epzS7iuM8H6U3J29Pwp5Y8ZoFYFbJ4/Wk3DnPaheGpwbd1HHrSCw1Qc9cdqUfNkAUrN82FP60jSKMHH9Kq4WEAHP1pNxb1pS275qZu2nk4z2pAh4bPfpSj5s5pisCuQQecGnrgADtQAqqN3HSl3Y5HrimKx5HRT70Y+b268GgY7dx3pfvDpTSw7fSlXGNvUDvTQmK2VZcHIpeW57U3cVGTwKXzNvXvTYh20BetLxtJI5pFbcSNtMY57+1LUB6vnIpyjdTNvOc0/cOPfrTJtqU9cs7/AFDR54dKvxp2oqQ8E7IHQkHO1gf4T0NZfhfxX/wkHn2F/bjS/ENnxdWJP5SRn+JD2P4V0CkLj2rE8WeE08SLb3dpN9g12y+eyvwPunuj+qN0I96fkBB4l1u7s/EvhbSbSTY15JPNOPWKNOh9PmIroG+YdcA9MV4dqnj3W5/ippks+g3mm3VnpklndTPbPNBHK0gYshUcgheDnvXpWk+MtNijjt7zU7iS4kI/fXdo0KnPAH3QAPrUyGdFd39rpaqby6htg33TK4XP0zT7PUILhfMtriG4UfxRMGH6Vn+IPDcOvRQFpTbXUDborhI0dgCORhgRg8VNpmmtpsJSSb7S+fv+WqH8doxQmKxy97byfDnWZNUsk3eFr6TN9aqP+POU8ecn+yf4h75q9rGoTL8TdBtYJybZtLnuHRTlG+dQp/n+ddQyxXEEkMyB4pFKOjDhlIwQa4C6+Her6Hc3mq+H9TE19Fbrb2FrfKGjiiD7zFn0PIyelMdzvCrdxwT1oZSOoxnv61wOk6N4/Rv7RGr2aXF8oa5068jZ47ZhkDyip9Mdak8KeMbzSbifQvGUgtNWWVvs9467be7jJypRugI6FT6UWsB3XLLtPNJjb0pI1HDI25cZBBzxQxxjFAhy+1JuKnBP6Um/86NxY+lAhwOeSMU7g8Co+Rk9aefXFFwE2/7VFP8A+A0UrgcesnQdjS5+Qkgbe1RpxnP15pytxjqK52dgvO33pwbbxnAFIsg6ZJ/pSbhkZ7ntQGoAtgk4/ClViuD94etBY8qfvZzQu0Kw2/N6UwHSfM+QApPqaTDqc4ytKp3R+mPSjjgZ5pC1EYn+Hp6U4dePTNNkU8YOCKTHt+VMok6dRXF/GIBvC/h+M8rJ4i09SM/9Na7NcNnH1x3rifjB/wAgTwqmck+I7Hn6SZqZaouHxHeXf/HzIuc8+tRhg2PY1Jd4892PXJ6d6hX72M8mmSSbgeD6/epq/L2/Cm7dz5xilXGMnI75pksdgq+V9MEUgcqwHTn0pNuFPYetLtXdu7Y+tAyXd1HXNGaiXBwAc/yFBCtx1HSgViXcNvBzz0pQw43VAFEbYIypqU4z834c0AKsm3O4/KentRxwQRjHX1pgUdCN/PbvTdqhTxt9j2oD1Jc46HP9KUsfWoWVWUHcfqKdwvHfigRIrfKM5yR1pVYADBBHb2qMqOPU9+1OCryAOPagBwk3YyeO5pQwPBwfxpgjHQc8d6VlAwSO/B/pQBJ8vHr65pc9ecCo1A2grxijbjJxTAfknOeDSBtpxupF29ucfpSjAwe3pSAcGx3yOtKGBbOcCk+hx7UgYjI5+lADpMMuODx60bjt4P0ppUbcCkC42kfpTQiRSN2CduO+aXd0zj1zTfMXgEYOeB607O3Jx8p6jFMLA+eg60xX+YDcCe4zTm5zjpRgMw+XBHekhCN8reo7etOEnAPbtmkz/d6+vrTGbb1+vNUUS59CM0Kf/wBVRrheQDg04MeO1SIeHHttzTiQzVHtHIGNtC8A80ASbirA570M3zr2z6UAq2ATwOM0jOOjc/1poB5+UAZyKFfrk4NNX2/EYpwUN1OaZI4MOcY4pPvd6aWCrtHHYGmruOMfezSAk3KnHBz0xSLKV7D8aTAkUg4z3BpBhflHbtTAc0mG3AZHek4HTpn8aRiOBjI7U4/X60AKGGMdD60xeOc5Pr2o4bgYNG7aPagB3mnhuCoPIxzUgYNz17UzcG5NLkqD3z6UDJBikZgGGKWP7vsaay/MG/KgQ3zAMt0Hc0/IcZH50bfMb3xikzsXGKYCsFxTDhc5Py+npTiu8+mB1FSqoZdpApAVCwwev1p+4Aj1/Sh8IcUi4zkDpQM5xwV+J0rg436Qny/SRq3lnO7y8kkDrWDqK7fiZo02QvnaZcRn32uh/qa392GxnnNMCTfuAy3zDjOKN7fc6e/rSc9+lO3KcjkkikIes3bPFL5yjPORUZUNwSc9RT1XjI5P04oAd5w4BP4ikUjOVyPamhfmyOf9n0pwxnH6+lO99hMkXKjPUUnmndn34xTeCpBPzUnRic4GaoRL5g5xS+YNntTeGxxxQOe9AD93bGRSqSq5DHPTFN6nHAP1o+91NAhFb1pxkpo+bIpWVWAOOfWgBPOVlz0HSlZx+dHGzpkimL1yAF9qBEm78Ka0ijsevQ96XbuXrSGgYCQY6N+XSlVgScnHoab5m1c4xTFcyZ+UUAPWQtnPHPrT9x5zyPeotozn9KdnPPOKADzPl5Jx608SDjr9ahcevNOXheAMelAD9xbr+VLv24NNDbeg49KXfu6dKQDmJZfp7U3OBg+tI528801TuAJA69+tMCXdx/hTGkAx7Um/qAeegGKZypBxn3FAhyS/MRUivuzjmohIG5IwaeoIII4PSmCHZZSSefpSKx4GKNo9M+1KPpSGNdvm46e1OjYqfc9+1KuV64zSNn1+tBNiZm+XBPTtUW7n8cU3OCQaR2xweKaDqSFgxyXIGKaJSynnJpqtx1HPNO2gdvrTAlifpkYNSMwXoKiUjdxyO1Sc7uf1pAJ5h4OOKGk+U44pAQM1GzHOeAKYibzjtGTlu30rnNd8N3Ovaybl9Tmj050RJLFEHzbST97rg/0reXpml3HP9aknUeCAiqOg4ApFkOcYwO1BJ2+1MU49aoeo4MBnP5UqyZU4PHpTQ3PTI96dwPx60CEbOO/tRNtnj2zIsyjtIoP86XqvPWms23+GgAVgq4X5V9B0FNaT2Jpd20HuPSgMPr60tQGq53YK5X19KdnbikXdu5/CnDnqvei4Cq3px68UBvzpcfwkZpN2M8dKRWg/f9fzoqLzm9W/KigNDkxjdyeOvpTznoOD+lRc7+Tg/wA6cpPQk/lWFjrHc8gGlVe+OfSmcq2RyR2PWpMhc5peQhV7qOe5pc7ckLk9zTV+XBPAobLZx1HY1QxSfMbnj9KVQN2fSo2x8q7ePpTlXkt78e1ACs3X6UvO3gfjSYVu2MdCKXb/AHRhqTFYRpCWIwAe5FcV8Xy32XwUoAy3iOzP1w2T+ldsGKsT1rifipCJLzwDF3OvxuP+Axualvua09zurpv30meV3Hr9aYo3fT2pbjDSNluNx701euDwe1WQPBDK2ODTV746+meKVV+bd19fWlYdCBu470CBvmOOhFLuG2kXoB29qQthunGcY9aABuMYHy/lTuqjqOKYJAG2YxxxRjbkL+VAAT82T6U9m+Xr+GKYzfNk9O4pWweetBIRnb05p8g3Lg8Z/OmDGAOjZ/OhWDKCQQR6igoBxHggZ75p33sEY59+KGw3I/lTVYDOOmeMdKBIkTO3B4AoHU5PNJuG0evrmmsSuCAcd8dqBj8/LkYpFZvlz0703d8hHVc5oWT93uI/+tQKxJGqj6nrmnh+vfvUfmA9eDT42DDPQ5oGKnzHJ4pcnkEYHakDBgw2gfzpF+WPAJ6dTQA8tlgO/Wm7j0JzimrGWk7iluRHZqZLmeO2jHO6Zwo/HNBJIzBgMAUiybcEZz6VzN/8UPBmmx5l8S6dK3/PO3mEr59Aq5NbGi6tFr+mR31vBcW8MhOwXMexyo6NjsD70CsX93y5P1waeOxHNN5x83X1oX5uD1FAwbOcAY/rSfNgZP19KeU464pq5HU/jVXAwvF3ia80Wew0zSNPXVNcvtzRwyPsiijX70kjdlyQPxo8MeJLjXIry21Ow/szWLCXyrq2WTenIyrq3dSOlcj4w8TXHhn47+Eovs/n2euadJp4k3YMTo5fPvnI4rqI2Vvihqix/LjTIftBH97ewXPvjNA2joOq8HBH60q4/HvTY4yZFCdxtIxwfeqWlapZ65DLcWM63EMcrQsy9mU4YfnSJ3NHnmhWwc4wKRWI9PY07cH68HNG4+pIp7ZwaG/eLz06e9MUc4J4p3HODnnr61QmOVSpABBX9aduw3X3qMsOh4NJ8rE1OwkPZgOc4pFk4IHY0zeu4gD6rSrIqrxz75xVCW4/ktkjj1Bp23zG45I6HHNR72XOFyKmtZv36gpnkHmhDZAEaRlaE7wxIBUhhnOCOPequn65ZatfX1rZS/aXsWCTyKp8sOeqhuhYdwOleTWPia4gmfwF4dmMev3+rXzXd5n/AI8bXzCzMuf4ypAA/GvWtH0iz8NaXBpenwiC2gXA/vOe7Me5J5J96koucKvtT2UZwTio1QtIDgg57V5xqXxe1Hw/448SafqXhy4ufDGlyQxvqmnqZJbYvEr7pY85KHJ+YY6EUBuelLk8AbsU7lcfrXO6lrFn4o8A63eeHdXhu2bT5pLe4s5hvDqhI46qcjvWh4d1J9Z8KaLqLNue6soZXb1JQE/rQBp+Z6dqDIRIOxpue+MilZcqO/vTTJYSN827r3HanK+75v4TSbS3YEUJ80eSoA75piFWRcNtPsRQrllwDmlW1bdwuR1zUE19Y2ZAuL61gY9pJ1U/zoEPlXpzmmp939PpTluLe9UtbXMNwg/ihkDj9Kj2heB164pFGZqmjzXnibRdUjkRY7JJkkTu28AcflWnu+dyOlIrfLjG7HWk87pxn3pgO8zqMZFEf4n60m87iQORT3ztyOvUUCHq23Oc/SjcWII/+vUbSfLhgcfShd3fn3FAx/mEdT9MU5c7zkYPp603HbtQrHcfyzSQiTd0pytlcdqYnvQzc4HB/SquBIuDwRj3o5XODUe4ADil3Hgc+9O4DlBwecjrzTl6dfyph6HHNL5hLDI2nt70yCY/MuVpOvB4+tRxudzADgdacGDHPakA5mwu084pPXPI6U7Hcc/zphyeD+dIAVdoAUgUMw5I5OKF+6R2p0cbS/KF/SqAYp3Jg8+tNPy5Ofxqv/aVlHqa6d9ut/trKXW2EoLlR1OKnbnORyO1AAGIOT+ZpVfHy9Kdbxhplz0JxWT4d1pvEGlS3T24hmhup7Z4wehjkK5/HGaljWprNkLnPamg/hTOehGB1p3G3PUjv60wHr9ME96VuOc89MU1ZA2OMGlPHOMmmIVVPAPPtQyjjOBiq95fW+nW0l3eXEdnax/fnlbaq59TWHcfErwdaxgyeKdLI9EnDn9KQHRbeevXkGkXJz1wPSuQX4xeEHuIIk1KV/OlWFZPs7+UXY4UbsYGTXXuNrbRx25oAcV3dsfXvTixHPbvkU0MeQ34Ubhz/e9OtADlbrQjNznpmkXAXIHy9aUHjigBWx29aOg68Un3W6ZppbjjpTAkL846mopchuFzT40kkOFXn6Vn6n4i0fRWEd9qdtbyHohfLfkOaCTQi9xk4zjv9K5w/EC3+aOLRNbmlU7Sv2Mp39WPNK3xI8L2/Da5b+Z/dVWL/wDfOM1DB411TxFP5ehaU62qnDahqimND/uJ94/pQBbj8WXzDcvhTVAvbc8I/TfV7TfFFvqF8thNa3Wm37xmRYbtMb1BAJUgkHGR371qRymGFnmOTGm5yg9Bk4rmvDlvJrl9L4jvgVklXy7OD/njDnr/ALzcE/h6U7jOl3FeD0prNxgmnM3rgimnuAAfQUiGP3bR70w5+oNGSwx7U37q8DNBRIW29/wpA23jqM89zSCTA6ZoVt2cLz7UAPZeATznuBRtPY0x3K49PSlWTcM9RVEDiRt64qLcTjnmlbG7J4BpA2e2O1ACr93k5p23nOefamjH4+lLzQA7hc5Ab1o3DbkdajzyeM0/g80hihwOhpSwJyeuKavQ8fnTG9MZ/pSsIPMT1/Wim+Wf8miqA5dvlwB/9ejeWXbnBPI70mTyGGD2PrSnK/dXjrya5kdorSMNrd/50rOQwYD6jpQrFl4XIxn3pqkbQcfj3pAS5H09qarncQen9acc7SSfpmm7dp6/4UxDt4OCBg+9KWJyBwaj3DqDwOoo5OCPx/OmA/Pzcnk9qXaeOeKj4cYK4HZsVJ/Dzx60mMduHqD/AJ9K4/4hEP4i+HiZ5GsM3HfEEhrrAwyMDB+vWuT8c4bxl8PRktjUJnI+kLVLNae511xJ+8cYzk0Rtu+tJIS0jduaazFeAuR39q0ZkTHGfm6etGfbj3pqtwdwwWHT0py/L0+lIALZORwKj2nzMgcfyqbdxjHH8qxtV1O4svG3hfTlk22d9b3hlT1ZFUqfryfzoDc1xySxBxihmz7UL94j8aj/AHjdfvD070AO3Fmxj5semKe58mNpJisEKjLSyEKqj1Jrm/Ffiy40e8tdG0SyGq+I7xd6QOcQ26d5JT2Ht3rJX4WtrpNx4z1q48Qy5ybGMmK0Q+gUcn8aAsdlZ3UN9axXNrPHdW8n3Jo2DKe3BFWkGcHOFxyx6AVUs7a30yxgtLKFLW1hXbFDGNqqO2BVg20dzDLBKoeOZTG6njcpGCKAMzw/4ks/FGjjUbAyPa+a8QdkA3lWKkjHUZ6H2rRVsyDPGfWqPh2x0rTNFhtdESGPTI2dI0gYsqkHDc+uc1cxyMqD3OaAHNKIY2eR44Yk5d5WCgD1J7Vjah468M6UQLnXrFc9FjmEhP4Lmta7tbfULOW2urdbi3lXbJFIMqw9CPSqul+HNE0Rcado1jZADH7mFRQFjGj+KvhKaQRjVvL3HaJJYJEQH3YrgfjXUDG0AEOMZDA8EVneLY11LwZ4gtJEV0k0+ZcEA/wHkehqDwPN9s8C+Hpj826whO4/7ooA2QzcjHy0/gYAb/69JuC46daFzuwflyaAHHOcnnt0p64P4+tRxOQ3KYNSbsN0yM0COR8balrl/wCIrHwp4evItKuLi0a8vNRaPe0MOQoCA/xE1Tsfgf4WhkSbVhd+JbtfvTapdSSgn12E7R+VXrXY3xp1zccy/wBiW/l+y+Y2f6V1Mj9+vvTBlLT/AA7omkMjWOi6dakDCvDaorD8cVpSSOxB/pUHK8dieKepyMjFICRSep7jn0rL1/xhoPhFoF1vVYNOM4JiWQnLY9AK0mxt56ClaC2uWRri1huHjHyvLGGI+mRxTEc0vxc8FvtMWvQzZ7Rxu38hWt4e8TaX4oW5k024a4jgbYzNG0fPtnrWimyHiOCGMD+7Go/pStLnngA9doxn60x6WPLv2irXULPwvo/ifSrVLvUPD+pRXiws+3zEJ2Mm7sDkVL8J9fun1bVLPxPaPpfjDUJPtUkUuDHLF0RYmHDKo4/M16PfWNrqmmz2F9brd2cy7JInHysPSquteG9P8QtpT3KMsmmzrPbSRnDqRwVyf4SOo9hTFczvHuuSeGvCN7PbFv7RuiLKzVThjNJwv5dfwqvpcFr8O/D/AId0ZleWa6nW0Hl9WlZS7u35Ems/Vs+JvjTY2Bw1l4esheyKOVNzLkLn6Lz+NL8VtYtfDknhHXb8lNMsdUJupNpbyw8TKGIHXBP61LGux2si7ZGU8n29aaG+Yjd8y9a5fR/ip4N8SXCwaf4itZpmO1UclGY9gM11RXaSCDkHrSBkm4uwPY96G/8A103Py/0oLdsDHtVCH5+X2FQSXqW6hmDNzj5VyasBVA68mmISGz0xQI5nXPF2vWjxnRvCUmr9S/mXItz/AMBJBBqPT/F3iy+uLdJfh9PYxswWWSbUoSFHc4HJrsDI3b8KRZGyMHjv2piuOYbW4+7mmqCGyDimyLIBiPaT71heJPFOqeGYkki8MajrSscFdOCyMPqCaQbnON8N7yTUPFWo6e8dhrT6rFqel3cgyjMsKqyPjnY3zA/XPatS3+JA1CxubePSbmz8WW8bPJotxE+GKjLbJQCpUgHBzVP/AIWZr8sYaH4Z+JGJP3ZHgjA/NqkPj7x7PIv2P4Zzovdr3VYY/wD0HdTGaN940FxaeDbrR2V4Nc1AW7rIuWSMRu8g9mBXH1pbOGbTvjBrUqRyC11TRraUzBcoZYpHTae2drDiuIh8P+PI/GUHiG28E6faRRtJMdMbXR5JuHXa02PL4bbkcdc11/8AwkfxD8s/8UFpbnONsevgH9Y6llGvH4F8OC7uLyPQdPgvpI3H2iG2VHyVIzwOv+NZHwnukufhn4djXLeTa/Z2DDBBjYof5UyPxp4zt8tcfDecFR0t9Whc59sgZH5UzRvH0k19a6a3gPXNHSSQoZlijaCIk5LMVPTNAHZKDx6UMpOMNilLfMwA4pd2B7UyGJ5DXW1PMeL5gflOM81x/wBn1b4iG/aLV20Tw7HPJaxx20CST3JQ7WZmcEBdwbAA6V2tu375WxwD3rmPh+WsY9X8Py/Ld6beSuF6boZXLo/6kfUUwOcbwbH4en0zwxreoXWteEtRlIspp5miltboAnyXdCNyOMkA9CK6uz8D+F9KnFnH4f04SbS4aSESFgDg8tkk/Wm/EiFZfAt5vO2WKaCWHHUSiVduPetya3aXVopywO2EqRjuTk0CexyF5YWWk/Fjw0mm2MNiJtNu3uVtoxGsmCgUsB1wSa7CTP3vxrnZl8z4uoWHEWh4Qem6Xk/oK6VYzI23pU+oFTnzMnhulUdZ8QaV4Ztzc6vqVrp0Hf7RIFJ+g6muO1C+8T+PvEmraXol3H4f0PTpfss2ohPMuJpQAW8sHhQM4zV/Q/g34Y0e4W9vYJfEOqZ3Nfas3nPn2B4H4CgqxqeDvHOn+OobybTortrOAgJdTQGNJc/3c8moviJ46h+H/h1L1ofttzcTrDDaqcFyeuO/Arp1VI4VSKNY0XoqjAFVrzT7C+e3nvLK3uJLMl4ZpkDGE9yCenT9KALCyNJDE2zZvRWI9MjOKX/Zxz6ULNHcKkqFZIZF3I8ZyGBHBB9KXOMkHimIGboM0jBy3ynGBjpVHXtUuNG0e5vbPTptVuo8COztyN0hJAxzXFWHiX4o6xcYTwfpOhwHp/aN6ZG+p2ChAejxq7L0pVBzjJH1rkh4d8bX2x73xlb6b3MWk2Ckf99SZJ/IVF4Z1XVLXx1rnhm/1KTWIrSygvI7uaNEkUuzAqdgAI4B6ZpjsdnuHAzx2pd3y471C/bFOVS2M+vagkcrHd8p5/Q0HLNg9D2xRnHanbjweB6UyRY1wxH86dgrnnA9qaPvZNSc9qYgO4cjg45p6xllJJCqoyWJwAB3NNOce1cx8U7yfT/hj4iuIHKTC32hl4IVmVW/QmgCle/FKG8uJbPwrpFz4oukO1po/wB3aoe/7w9fwqufDvjXxYgXX9ei0HT266foq4kI9GmPP5V22m20Oj6baWdnFHDaRxIsaRgAY2jnipTkg9DTKMPw34E0HwjubTLFY7lsh7uUmSZ/XLnmtry89DmnK/HB3CkaQRpIzuI0UbmdjwAOpoJEX93IDnHOa5jwkVs/EXjXSiRvg1Jb1U/6Z3EKSAj23bqjuvit4VExgs72XWrlf+WOl27zn8wNv61Xj8ZXFxfTXmneANaku5kWOW4uFit2dVztB3PyBk/nSYJ2OsDdece1SGTg8gisTRPEWparqElnqfhu60cLF5i3MkqSxtyBtJU8Hnp7GtoKVwOn8qQx0bdjwPWpD+X4Uzd24zTlbnkce/aqEJNDFdW8sFxClzBIMPFKoZW+oNZtv4R8PWTb7fRLCH1C265/lWqc9ulM2tuznj0oA4j40WNv/wAKxvGSFI1tbq2ugUULt2Sqc8e2a7iRxJiQ8hwG/MA5rB+Ilj/aHw48UW2MFtOmI/BSf6Va8K3j6p4Q0G9k5e4sYZCR6lBUsSNEMG+XOMdKG9Q34d6TaGOTSbstk9aRQ7O1Rzx1NO+VufypisWGD370oagY4KR/Fn1qvqWpWeg6bPqGozi2s4V3Ox659AO5NWF+YgMcD19K5ebw7deI/GDX2sx7NI0xgNNsyQUlkxzO2OpGcAHp1qiSrbQa94+3XF9JP4f0Fv8AU6fA2y4lXs0j9Vz/AHRXRaX4Z0jRlAs9PhjbvIU3OfcseSa02k3cD0puSuMimSH2e3M2828RbsSgz/KpWPpwOmMYpow2CMA5pN5yQaQEkfqWPP5Uh+XO35QvYDihQM+ntS54I9aYAuG6/lTVULnk+1Iz46fpS4OMkdu1MQK2OCaJMbcZKntxSN81DdOTgD8aYDFLZ55+tO59fwpMArn8c0gRv7+7nINIWo/cRwTRuP0H1pq8NyT9KVvlHByO3tQFhXU7Sc/rTVXavU/jQfu05TuHU0wsJyuCc4oBPPzH2pfMG48frScr0oAdu25oOMYzg0iryfSj0POakYmSxJ/h9qU8cnk0bj/+vmlQFmJPQelO4hvmpRS/gP0ooDQ5bp1FOB+Xg9OlCj0/OkVS2e/PauY7BVU84Yc0N8vHbPIo8wrweooVgePTmgLC8g47Uq/MOvH+11oycAkckdv60nzKuSM0AO2hVP8AEexzUe0bRjI/lTudg4ox3zmi4CqdowOlKX28Z4IxzSA9OOO1BXPOOaAGFSuCRkn0rkvGR3fET4exgn/X3Ug9wIsf1rrlbtu79PSuP8WfN8VPh9t4KxX7Fc/7C/4UM0p7nZyMfMK54znpxSFw+Tt478d6SZtxww9Oc0qt82AOMU0ZD227dxJNLGw2+3rTcE8HFHC9W+nOaYjL8U6xf6WtjYaPBFc63qDMkBnP7uJVGWkcdwPT3rkm8H+I9H8c+FdbvtcuvEUPmT2tzA1ukaWxkjOHTaMhcgA59q6rxV4TbxaLGe01a70LVLB2aC/swGZQwKshU8FSOx9KztP8A6jBdxXOqeMdZ1ko24REpDGxHqEAoGdRJgSHb+HtT48FlB5HSmsGbL7cZ5oQneMfeFJjOY8JyC48a+OLmQZnju4bVW7rEIVO0e2STXUFs8E4PY1x/hy4i/4WZ4uSCRZILqG3u9yHI3gGNh9QUxXXsA2QfmNMZHHjZwfpVqzby542B3KD0zVdcKuCvbj1pysUYc49DQI8z8N+LLTwVp/ijR5JUfU7TW5VsrEt+9nSZ967V7j5jz7V319rlhZ67p+kzyFNQv4nlgj2nBCAFhn1GelOfRdJm1qPWG023bV1Ty1vCg8wL6Zri/i8v2Gbwj4l+eOLRtQYzzKpby45EKnIHOMgD8aQHoC/6wZ6+lNZRyATj0rjNK+Mei65crFpen6vqMOf+Pq3s2aJPx7/AIV2rMN42jAxkZHamAj263On3kRXIkt5EI+qmua+F1wLj4ZeG2BJCWixN9V+U/qK6yyj3XKYXBauG+DLBvhvZoDhobu6iZW9pnoGdrk4wvHpQsm4YGfcYqnfalYaPbpNqN7b2EMjbFkuZQilvQE8dqqN4t8OwjL+INMUe92n+NAjaVjgAHI65PanqwXncfw61S07UrHVo2ksL63vY1OC1vKrj9KtKMnHTmgDlY2H/C7pztPmyaCnzZ4IEo4/lXVMwHAOR9K5KRXj+NysSNsugFRnqCJRn+ddVvEhPOR/9emJj2+7z0FLyY+BwPekVt2RkZo3bVx0pDRIu5lzwPUURkc89zx2oXjtgHk5pu8ZHQg+lAEh2nvzS4zwfpTN23tz3p3foc/zoJG7dmMAk1Ip2tnofypvPc/LTl7knPPWmIq2em6fZ6lqGoW8Ajvb8qbmQEkuVXaDjtwB0qy4SaMpKiSxHkq6hh+RpPuvkHB74o56jn15xTsCKV3oGjX215tIsZJI2Dq/2dAykdCGAyDV1pAzFtp96YABnGPWkaT0XJx0pD1JPu4JP5ml8wbh27fWmKTxuGD1xilOBt457UATLkqeMHPrSldx55HX3pitjPPWl3bRgH6Gi4D244PTtmkVfmP59aTduXGMnvTlxt61QrD1z1796erOucNxTe2c5pMjNK5I95pCwyT7kd6asjggZNMLlWHf1oeQKM5yP5UxnNfE2SWDSNFu4pWi+za3ZtJtP3kZyhH/AI8K624YxyPliBkjNYPjDQ5fFHhPUNMtpo4LqULJbzPyI5EYMjH6EVy/9sfFnT03Xnh7w1rsaDLtY3TwSyfQPxn8KBo9CVjxub8Kc0x9SB9awvC/ik+J7WRpdF1HQ7iH5ZIb+MKN3cKQfmHvWzwy4J96kYo+UZP50mewHFLuHQ4/Ok3BecDGaBWFXduz0PpWbr3huLWpoL2K5k03WLXIhvrf7wH91x0dfY/pWlux3yKXcelMk56Pwvquo3ttP4i1yLVbe0bzYba1tRboZBwHcZO4jsOma6CRi10hHUqenfml5ycHkU2QjzIedo+YbexNMRzt8vl/FzTH6GbRJk+u2VTXTxsElU9s56VyWvsE+K3hDkr52nXsfX0KH+tdVwjZLAgUimcp4RZrbxF41sXbHk6l5yYH8MqK4/UmulwNwONprnYZhbfFTV4AoH27S7e6A9SrshP5Fa33BXIY5A5PFSMl3e/5U2SNbmOW3k4imRo29QCMH+dA2leTx2p33XBBAPr1phc4r4a6pBZ6Db+G7u6QatpU8mn+UT87omWR8ehQjn2rtJI2UdeBziqY0XS11ptYFhCNUaPymutg3lfrXI6v4gs/BfxQmutWvlsNI1jTI445pyfLW4iY5BPYlWphqzulbC5Dc0/zG4yao2OpWWqwLNYXtvfQHpNbyB1/SrkeR1PP6UhWHx5ZlLfXmuO8OqsnxK8f3xI3rJZ2irj+BIQ2fxLH8q7HeBk/pXF6TiD4seM7bG3zbWxulX1yjKT/AOOiqsC3OxJBww5yKdu7dvWodxVeoNP3Er70kDJwemTijcVbCnI/nUa/N33U/vySe30pksWOQfNnoPapvTByKarbTkYPrxQWPO2qJJFXI6nPasXx1p/9reAfEll3lsJQM9mC5H8hWqrsu7t2FPMa3VvcwSYZZIWU9+oNMDH8HagdV8G6DenP+kWML/T5BxWoWPGDgiuW+Ec5uvhh4fJPMMT255/uSMv8hXVsdvHapAP4vTPSjKsjK4EkbDaysMgg8GkZSCTnjtTHby8uXAA6+9UBLptrbabGkNpaQ2kK/wAEEYQfkBWFoGsXl1qniPSdQmWW+0q7zHIoC77aQBoicegyPwrcSboep7GuP8U6T4ms/F6eIfCdtpd1LdWa2V7b6nI6INjFkkBXrwxFAzr97bcA4z2pGY8noOtc7oNx4ya+KeJbHRhaMhKXGlSyFkfjAYP1B56e1dCfmXb+tStwGDG04+vWn+ZnHBFMxtGB+dSqBt9DTEEbAMwA/DNSqwbkD61CWAx6U7d8o6HmmAzUbVb7R9TtWPyzWs0fPuhrmPhPObj4WeF3JyRZKh/4Dx/SuwtfnZlPVlK/mCK4H4LyMvwx0yE8m3luIOf9iZ1/pUsZ227GDTOp9/SnjcY32r5jhTtTPU9hXKfD74g2vjzT7grA2m6tZuYb7TJ/9bbuDjkdSD2NILnS7yy4xxntS7i2e1IQVHXmq93q1npc1lFd3EVvNeSeTbpIcGV8E7R74Bp2GXQRmnKx98elRDuBT427flQFiThlA3c0u4L15NMZwvJNIxzjnINMgeGyw5+op3TPOab/AAik49aBEisMYHFO+UAdqiVW3Zp8nfFMBv3mOB+dKHITB52j86by3U49DSFtykE7aAHcbQQKXcGIVqajHaASCacBzggH0oAFA3bQcUnzZwKGI9aa3zY+bvTQD9w6ilGOxpv3SDjH9aUMOMD86BDuN3NNOOmOPahm+XAoGdvpjpQA0fePNBU7hz/9akP5GlVtvH6UxijIbg5/rTg34U3bnvn8aXK44OW71IBk7uRxilUkZINNLA9TRu6Y4NAg+X+6aKNzep/SigVjmRxkk+1OXPY/pTTznBwccGkVjgKcYNcx2CMoP8OD696cef4cY460h3dh+FH3nxjGaAF3DkZzgYpcg/dJ6d6RcYzg5z1pGxkDIBNMBVyV4J9jQp/eYxg0EttPH5U7d1HT8KAFDeoxmlGfWo1bbx3PX0p+4EjnGBxQAkgVWbPPbNcd4kG74w+AlJOVs75v/HVrsWywAzjJzXG64wb41eD8j5k0y8cfiVFSzWnudpg7gQ3PQ0g2qx3ZWkZgJM5yPrSqxkkB29v4asyJONpwePemGMMATkDrx1pzL7AZ9M80q5wMd/amIw/Eml+Kr+8tv+Ed1y00W0WPEzXFp57MxPYEjH51hL4T8Z3FxMr/ABNb7RDtEkdrpkS7CRkbgSeoro9U8TXVnq39maXpL6vfRxiadfMEaxqegLHjJ9K5jwNr66r8UPGFvJp93pd3LbWlxJaXgAZSoZGKkHDKeDketMWpo6T4T8XWuqQz33jptSskcM9p/Z6Rs49CwP8AIV2C4M+cfLmuPtfFeqTWeutDpxv7y11Z9Pt4UO0KoUFXc9hjv7iumsfta2aG+MZuiPn8kYUH0FINdzjvCOmroXxC8VWIHLubyI9zDKQ36Pu/Ou145HXvXM68fsPxQ8KXaLzf2V1ZyjH3gu11/I5/OukUen5UNF9B+Tt4HOOKjCy5JJAqTd39B0qlr2rReHdA1LWZg0sVlbvNs9SBwv54oEXFtptoIIz+v1xTdroGWVw0bfeUoCD+FcEvgDV9R0V9fu9avLfxk0X2yBoJStvbEDcsHl9GTHByOa7Dw3rq+KPD+naui+X9rhWQof4W6MB+OaGBpqzom1GVF7BV2g/lUTJKxyrqBnJ45NSp046e1Ki8mpGOst63iE8jPTFcP8KVKeFtQR1CFNYvlx6fvm4ruIn8uRXI4HJrlPASi1l8V6eww1trM0hHqJQsgP8A49TvYOhsatBpdxo90NatLe702FDPMlxEJFAUZLbeefpXG6Hf/Cya1S4gh8OWkTHKLOsYbr6HpXoPyrnKrIrAqQw6j0NVodE0qFv3el2KljkkW6/4UXEM0S00WGN7jRreySCbhnslVVbHTpxWise4ht2MfrUcMccWVihjgTrtjXAP5U8t/ntQByGsr9n+Mnh2ToLrSLmEn3VkIH866lkI3Effz09q5Tx0wt/Hnw8n3Y8y6uLb6hoyR+oFdZcfK57YPHtzVNiZJwuT+P1pcBfmxkEdKaMtjP61IrbY3bG4qpbHrgZpCE4bvgdqCoTDZ61wvwo+LNh8TNNgV4G0nWZIzKdPuAVM0YJHmwk/fTjtyMHNdLN4iSHxhB4dltin2ixa8guN3DMj4ZMfQg5+tMZqtg/dz+VNMg4BznsQelY+veJH0HXvC+ntarLHrNzLbNPkgxssZdeO+cGq3iHxgun6suhaPbLq/iBgHkgDYitU/vzMOnsOpqRo6dcc8/1zShRtyOveowZFRC4Uvj5wn3c98e1KzdBznPahMLCso4GMikyOucD86cT8vy8Go+i7iMZ7HpVEieaMldpz6gcU3eWziP8AH1qSPPJwOnNPwOOcUhkHlzNjc4H4VYWPZnPOO9O9B196MsOhwe9Ag4xzwT3pQFYHJ59KaW3Ec8Uo+bjOKYCqw78cdaVSM8jFIqkMTn9c0q9R29qYC5KjhcZHNOX5sEjHtRzjBGfT2pNxGDnJ9aQhzMc4HSq2p6nYaLp8t7qVzHa2yceY56k9FA7n2FSRk+ua5G+8rXvjFDpt2qPbaPo66jDFJ90yySMpkI6ZULx6ZNNCS7m9oviHTvEbTrp80izQYMtvcwvDIAejbWAOD61sZ8vAzz2rktG1A+KvGF1rVr8+lWdqdPiuccXD79zMp7qp4z9a6fdvyW7UFWJizPwxz71G3pio9xPfIHHTNSLz/wDWpAJw33lP0p24KeTx2prZPHcdGoH3lJADUyR+4s3TINKUOc9PrXP+NPEtx4Zs7OLTbUahrmoSeVZ2bZ2sRyzvjooHU1g2fjPxL4W1Jo/HtjYW2k3O1YNV0re8Fu5/hlLcr1HzEYoEegDGPXFR3GB5RbpuIzjvipXj8pQSRtPRgcg+9Vrxmjjh2nnzAcGmI5jxhm1+IXgC6HKSPeWmfQvGGH/oFdXJGVkwxwD2xwa5L4kM0N94FlVdu3XUU4PHzRuP612Mv8WB+JoYzldQaOH4u6KD1n0S5jB6fdlQgV0vDMR2965jxJlfih4PcjgWV9Hu9zsIH866LzPmI9PSpL6D/l3cD3oyTxSrhjk+vIpfu5z+DCmiRq8HBBI9qivrGy1aNYL+ytr2JW3Kl1EsgU+oyOKnAMgIB+tN/iw/WgCKz02w0+Ex2NnBZxsclYIwgJ9cCpQ/J5B5pRgKec44o4zjH5UIBwIOO9cZfW7W/wAZI7gPhL3Q1TbnvFKc/o4/KuzZF+8BkfqK4rxsBa/EjwHcoxH2hL21Ye2xX/mtAR3OuCjk/pUqgrHlRkD1pm3HG7I7VNCMsqnmkimIqliu0Ae4p+5WDlWVirbTtIOCOo+tcfL8RNVivZYLTwJq1wsblPOkdI0bBxuBzyK5LwX4q13RfF3i7SW8NXM7XF2urJCtymYllXBGTwRuU9Kog9f+nBp/8PPX2qhpOoS6lbtLcafPp0gOPLmZWJ9+DVwMd5HTimiCUtuHvUtn/wAfC8cVEuSc8ZNSW7/vAQe/WmBwXwZkWPwnqVgDkWOsXsGPQCUsP0P612wbcpyPlrjPhuqWniD4iWaDYU1sTbe2JIUOf0NdntOCT2/WpGP+UAdcdqjwNx4/xpQ2F9+uKTcW/pQIcGx0FO3gZweKiOeO1IdysDgY71T2GSswZeVz+FMbDcg0bj16H+VI0cm1c8j6VAxxwDzxS+pB4prN0BznPWlHUj86okOSRTz8mBjP0pq/e605ZOnPPWgCxa/LOpOACcV578IVMWga5Yn71lrd7F+cm/8A9mrvoXHmD6jGa4LwDmx8X/ETTgcFdWS5C/7MkStn880MZ2yZGDnmuN8deBZ76+j8U+Gitl4qs169I76PvFKB146HqMCuw3YXgZFPWTb3I9KAOd8E+MrPxxprzQxNa6hat5d7p0p/e20nQgjuvHB71yHxEY3/AMZPhzpucpbpeX7r7hVUH9f0rofF3gM6tqcXiDQbv+w/FFsMLdRj5LhO8cq/xKa5XTrPX774kXfjDxPpP9mw6TpH2SNLUmYTNv3u6Ac8jt/hSGepx7m5xjnHNPB3DP8AkV5P4R+Ji+INcn1bVdUfRrFd0Nto7Quu1c48yViuCxx2OBXptjqVrqkQmsrmO8gP8ULBgPyoDYu7Qy+uakXCrjsahH5fSn56Y49KBC9W44NCkHjv1wRxRuPbpSc5z1qhD93PB/A0/AYfhUW4Ageo4p/mdAMCi4gx1pjLzk8CnM2PaoyQ2V6n2oAcjY/qKeHxg4qNW+Xng0qn5j6UxEnG4sBgkUgOTjGTSLnt+tGevPGKAF+906U1V25HOPWhcbj61JwMHNACeX8vbPqaYzgRkbck1LuOO1NZdwxxj1xmgBiufTHqKecdj9aYDtbkZFOb16igBCNv3eRSg9cD8aacqQQx46inYPrigBdowcHBpuc47c80773HpQ3Tt6c0AJu/2aKj3ey/rRQBzm0ckE8nG3PFEeNoGPqKc2VXH5Z6fjSKx4457ema5jqBsMDzkDjijAbaDwaQ+oXFO3HkY4+lMBsYKjax3EdDin59RnHamBsNtPX27Uu7v+tIYEc4J+VuKeMdCM0xWHqMHmlDHpn36UxCqRuwowBxx3pOrHge1DHd1+924pu75sdc8A5oAerbuT6/lXHakBJ8dPDu4ZC6Fct9P3iiuv6ZwM964++cn466RgghPDs+ce8qVL6GkOp2M2c8jPHT+tNWTa+Ace5pjTBmOG+XpS/L35x2NXYzJRJuwM45zUgfnIxntUC42kqT9TTo35wevSmSc1r15qHg/wAUT69HplxrOh6hDHDeR2K7p7SRMhXC/wASkHBHap9J1DSvFPii31y203Ure/t7RrT7RdwGANGWB2lTyeRXSRzNGoMZ/CpDIXBDHd/SgDlNQ0XxDo/iS81fw19hurfUlU3lhfOUCyqMCRWAPUYBGO1bejQalDas2rXEU99I24pbgiOMdgueauxsQTubmlUkg55PPPSmByvjdxb+Kvh9esSsa6nNavz/AM9IGx+oH5V1DSeWx4I/CuU+K0ZfwzYXCjMtnqtpNExOMMZAh/RiPxroprjfJKr28kY75H8sfjSGWF8tdzO21VGS7HAHvmvPfHnxI8JahoOteHodTk1O+vbWW3EWlwvcbXIOCSoI4IFd4tvDcWUltInmQSqY5ImGQVIwQabpOmad4ftVtNL0+3sbZf4YEC/j7/8A16YHIeAPiJc+LPCVwk2kX2l69YWIFza3sDRh22kboyfvKcfrVH4c/EDwpp/gPQbKTxDZC9WECW1Em6VHJyVKjkcmvTPtDbhk5PY1nR6TpttctPDplpDcN8xlWBQxP1xSFcp6p4i/snxHodpNCH07V1eGC8Vvu3AG5UYejLnB9RW1nZIQPXHNcV8U9Qtl8Myjz0XU9Lu7TUI4ujqPNC7gPQgkV28rZYsf4hnH4Uyug1f9Zk/981zGj4t/iV4zt24WaGyuU/GMqf1Wuh+3QxsqsxJzxxXN28hX4u6kdpXzNFgxnuFlfn9aljR0zLtKknA9KcuMjnJPao955OCcVKjbiOOaYC/dXgd6crFiOw+lJ0yevsKVRjvj/wDVQSzifisix3ngK5AwU1+Nd2egZGBrtLlN0jEcEt9RXHfGBvL8N6NcHn7NrVq/5sF/rXaTH94wzkZ4zTAYiheM59BU1rt80ow+Uggiq+R15JzgVKrHK/JjHekJ6HAeA/AEM3w/g0HxJp0kEulX9ytjdRt5c8KeaWjeKReRwce+OQaTxHpus+HfEngzVdT1qHWLC2v3sFmktRFcIk0ZUCRgdr8hecA55r0MysykE577ao+IPDdp4q0f7BfLJ5HnRzK0LYZXQhlI/EU7hc4z492t5B4DTUNOuTY6lpd/BNBdAAmDc/luxB7BXJpnwV0NPDOm+J7CVmn1CDVpVnuJDmWSM4aJmbqcqc5969C1nTYfEGm32nX8DS2d1GYpV6bgf61g6x4X1LT9St9f8MxiXUo4Etr3TLlyI9RhUYU7v4ZVHRu/Q0iovsbhV1BJ5HUEGnr99sOC68lMjIz61yGrya3HDb+MLDStQtJbRTBqOgXDhzPa5JLRhePMUkkY6jIrM+FurQ+LPFXjrxJZztcadPexWdo2MAxxRjJx67mbPuKSVitz0Vcbvm4BqMj1+YZwBTvMC9fwqPKbgUGD6A8UybCqTuIIwfX1qT7zDPApob5SQPu8c0smNu7nNAhdwU4z9c04gHp/Oo2+ZMgc9mp+Sy8/e+tMQn+rXJ/SnKdwJxg0m7b6D696eG+UHHB/SjYAVsqG5A9KRvlG4DJpOcnPI7c1z3ib4g6D4PuYLTVrtoLmdS8aCCR8jPXKqaAOl4XHrTg4bJrho/i34XZt322cqByotJiT/wCO11Wj6tba3psd7aLIbaTIVpUZG6+hGRQBo7V4wAK4Hxx4HfXPiBo1+8NzLpV9ps+lalJZymJ0UFZIyWHOMgj8a7wtHHDJJK6xxxqXZ2OAAO5rlG+LHhCHi31j7c6nlLK3kmPsMKtAtSrLoU/wts7C50jULybw8JktbjTdQlMwQOwVWic8jBP3frXaTqFOF7GvNJrrwTfaguowaF4m1CbzROLeGzuVh8wHO7y2wuc10f8AwnzzbmTwf4nYYzlrRE/m9Mp6nSqR6YpfXt9KyvDevTeILF7mfRb3RMNiOO9K75Fx97AJx+NavH0qRChu2KX5dygtmm9uenqKCFAXIyapCOd8ROlr8TPCN1MQIZba7s0kJ4WZtrAfUhSK6a4s4dUtbiwvIlntrlDFJG/RgRjGKy/FHh238VaKbG4mkt3R1mt7qH/WQSA5V19xWLBefEnT08h7Pw/qzrwmpmR4mI7M8YGM/Q0xEvwwmnXwi2mXLtLdaNdTaa8jZ+cRt8p/75Iro75isETqcfvVBDVneEvD8vhvRPss1z9svJZXuLm52hfNlc5Y47D0q/q3/HnHk4KzRnPrzQKxzHxYl8mx8LTjpH4itN30O4V2twAsz9jn8OtcV8Yv+RFhmOP9H1Wyf85lGf1rsZ0K3Dc/LnqaA6HI+Nm8jxp4HmzgSTXEXHqY8/0rpSCrEZyM5xiuX+IEZXWPA0oYfLqrDOfWFxXVSF1YnoDUlW0HDuM8+tAY/d6UDJTkZpVtpCocAFcUCZzuv61qEmsR+HdB8tdQeIT3N7MMpaRE4HH8Ttzj6VH4XvL/AE/xNq/hzUb59Te3ghvbe7mVQ7RyZBU7QAcMpwfeqE2tQeE/ixcR6gRFaeI7WCO2vM5VLiLcDEx/h3Bhj3q1NLFYfGSU3EsUAvdCSC38xgokdJmLKM98MDTY4+Z1TdsDB96dycAg8elRR7fm/eI20ZbawJFR6bqVrq+nRX1hOlzayZ2TIeGwcH9aSEW8HGP4cVxHxEYR+LPhu54/4mNxGWHTmA4H6V2u4yL05/nXHfFCMw/8IZqBX5LPXYy59FkjdP5sKoFudWT90jgEfdqSHKN14/Wodu1gDxxxxSqzLjFQUXVkKqTkkd+ax38MxDxwvieO4eOU2H2GW2/hkAbcGPuKvhieD+VPEnXrnFUSScM7EZ5/hpyqORjBqCNmDMTjr2qdW/PpVmZJ6GnRt8wbp61Hz0pysy8NwKYHGeE823xT+IVswws/2G7VfYxsufzFdl0yPyrjY5jafHe8hwNuoeHklz7xS4/9nrsmPzHBz7VAxMDjqSKGPzc0wyH7oODT14yCc00IaZMtyPrxUdzdQWNnPd3VxHbWcCF5ZpWwqL6k1Nt6d+5rjPEmjnxl8RLHQrx92i6bZpqcln/BcSu7Kgcd1XaTj1xTBM5/W/2gtJ8PxnU59F1f/hFh8j679nIhWQ/dG04YqTxu966T4c/2nd2d1r+tXEhutWKyw2atmK1hA/dovbODyR1NY15DbfFbx1JYGOO48I+HSY5oXXMV7dkcrjGCqDt6mtH4f2o8I6xrngpXaSz09Y77TN5JK2k2cR59EYMo9sVLK6HaxvnjHTsRzT0ZTkmoWZtwyc+nNOUjdywGapEkv8Wec+tKR3xz04qNm+fHanZ6knB96AJFXawOO9cVY4s/jh4iiHyi/wBGtbke5R2Qn9a7JWPXpXGeImWz+MnhK4JC/btNvLMtnG4qUdR+HNLoNHYgZyc/U01WOemKGba/Tmm5O7jBX360kwHq3oOfSk3juATj8qCW4IxTVUtgk8igDM17UtP8P2Jv72PbaBgskgi3iPPGW9s9/euIbWNGv/HWiy+Dpormcu51Q2QPkNCV43dt27HvXpboGjaMqrowIZW5BHuO9Vrext9PUpbW8MAJ6QxhR+lAyZnAY7Bkeme9O4289MdM0it2Ix9KkXtjrQIE69OPWnD6Ypm7bxjj0pCxbkcH3qhEu7Hbr7U38MioxknPrTmY7Rg5xU2Af5g3YIz70ikdhUWdx64oLleMDr0FUJj1BC5I/CnMwXPy8frUUchZc7iPQ05ecbhu9DTESqdy9M0bueRmmrkcY5pf4s8UAO429M0Me+M01m5IzwaRXO0YAxQBIG65HGKTd82D+dIsny84zTWbco4yKBgF3MMdO1OGTkdPWmqBye9JznAyCaBDs7TwM05DgcjJqMHsRj2peQcDn8aAJDlWHNM3E5/u96dwy9eM9MU1WCn/AAFACcf3qKXf7D8qKAOdDccjn0pAM4AP403qQc9+tO+5x/D2rmOsd064pNzdP5UK27JPP1puNwwMgCgQAhf96jHc5B9PxpOi5xg0m4f3iBnPX8qYEm0KRxtXoBSKx3YJ3UNI3A4yelJt+9zk470hj9xVsnqKbkde56012OQegxTXJf8AGnqA/jJGSB/KuL5Px8U8tGnh5gPxlX/A12Sqyvnqf51x8HzfHa+yceX4fi2j6yPn+lS90XDqdiwDEE/QYoXBJGMmjlskn8aD94AHjrx3rQyBdvQDOfapdw3ZIz9BUbN0HfPGO1G87gDwPU96VwJFmKBWC/K3t0p5YevFIjHb8p60mPLz+tMCQr82V646dqVCGXI65xzUAkZW5+7nAxUqk9OgzQI5z4qPt+Guszgf8ephucD/AGJVNdTcSeYqOG4ZQfzGaw/HFj/afgHxLaZy0unTKPdtpI/WpdBum1Pwrod3kfvrGFifX5BmgaNFVBOG4HrSmPawOAD0OaYp6AjGOxqh4h16y8LaLNqmoM4hjYBY4hl5GJwqKO5JoBov7tu4c/SkyWkPfHH0rgo/E3xBgK6rqHhO0k0Mks1pZzl9Rgj7MV+65xztBzXb6fqFnq2nW2oWM63NncIHjmU8Ee/oQeCOxBoCxQ8SeCdF8ZTabc6pal7qwcPDNE5Q4yDtb+8uQDg+lb/mBsED7vtUCsOPXPSpFzjOOOnvQMYwWPJUAPnPyiuYvGEHxa0tj/y+aLIob12SL/8AFV05J2+ufWuX8U5t/HXgW5B4ka7syfXdGGA/NaBanT8rJ0xj3xRuywOduaRmCsQRuNJt3ZxwKBku4sMY2nOPwpeVb1H1qMbnX1x09qejBVUN19cZoJON+NQ2/DwycbYdQtJGPoBMvNdrcvvYPjIbkH615/8AGnUivhHW9HMJWSbTTe203Z2jkUsmPUKc/nXb28n2rT7KX7qyQRsfXJUUFdC1HhnAIwPauQXVfiDfXk8UHh7RtMtlciO5vL1pjIvZtqr/ADNdQvcg5X0qaGUgYJ+m6gRzseleN58NP4n0mxHdbPSy/wCruatDw3rMkeZ/G+pKf+na1t41P5oTW2rHkMPm/SlXLZ7juKYWOQ17QbjSND1PVJPEPiS/eztnuBbw3McRk2jJAIjOOParFn4OstW0y1vI/EfiYwXUSzKTqODhhnGQoroLbVLC+1mbQWnR9QEG+S2bhmibI3Adx246VzPwqvHm8CWsDNn7HPPZowPBWORlX9AKTGizL8O7NlIOv+Jyx9dYl6fgab4P+G2g/D5rn+xobqJrkl5jLcvIJGJyWIJxnk810m4quM5b0FG0qBz70DuG08noe+aRQew+X6UrSbkUgbT6ZoXAb72D7UCGqx5zz+FOWQ5A24GOvrQn3jkYHTn+dP4bgnIHagAUBV+UnB7ZprgMvXA/UUu7acdB2oZQORnPegQL8xz3qTcVUDHX0NQqrEcn86Ubt2SwGP4scGgLEuNvqRTknYKAeg6E9qi8zHU/TFBwv3hjjI96BFr7VJuz5mCep6k0hYyZ3HNQFiuD69qVjx39etMB6sF69PSpVuto2qFUeqKB/Kq27a3JwT70TTeVbTyrG0jRRs4jH8WBnFMDN8ZalrVn4flv9Hm3XGnt9pltXXcLmEffjz1BxyCPStDTdWj1fTbW/tixguYllGTxgjNVtL8UaVqXhN/EaXCNo/kM8kjH7mAdyN6HPasf4Z28tn4B0eOZSjGNnCN/CjMSox9CKQdDpd+5SDyO3tSNkDkce9M8sYbH60/oevbpSAYCN3DYYdR2NPVjtzgdfSm7RupOFY569qpCJVye3ShHbrnB+tR7CrA9qkX5evzetMkfzgnHNMuhmzkJ6KAf1qVm6nnFR3a7bObceNh6UAjkPjLkfCvW5AARCIZx9VkUg12ZbzYYT/fjU5z6qK474rOi/CXxADw0lssaqe7MygCuuhXy7O0RuGWGNTz3Cip3H0OU+JUn2e38NXO3d5WtQg/Rldf5kV1LA8HGO5rl/ip83giSdeWtb20m57YmXP6V0hmMm0+Q+GXjnrTZS2JY+57etYmveB9J8TahFeaib1vLQR+TDdPHEcHOSqkZPNNtvE23xJFpFzpV5Zyzo0kN0wDQSbRyoYHrit3zPlIPXpSAwo/hz4VjVMaNbs0bh0aTczBh0bJPWr3iLwvpHjG1SDV7JLuONtyMTtkT/dI5FXAwZeTgrSqQzdQDn+lUTuZ2j+H9G8GrH9gt0tEkkWPfkkuWOACT1rH8Bxf2TceKNJjTEVjq8nlLjosirJge2WNbviDQo/EujTac9xNZFmWSO6gbEkUisGV1+hAqDwv4YTwzZ3ETX8+q3lzM1xc310f3kznjJ+gAH4UDL+o2S6rYyW7Sy2zNyJoHKspHQiuQ+LFjPD8P45Z7szi01CxmZ2XDHE6gk49jXbj7uCOneuR+MyFvhN4jJ6pFHL06bZFP9KkEdbf/ACzleB3FQqu1Aev409pluYIphz5kSuPxUGmLjy+mBSGx6yg/KRz1JBxmnOSrZDcY4qB08xQAcc9KeMHHbiqW5IRszsf4c1Mu5fvc1HANrMOvNS7jxu5/pVE9CVcDjk0/PTNReaF45JPepGI6ryKok4jxA32X44eDpD8v2vSb62/752OK7ZiFYc/UVxHxF22ni74daqTgRapJZM3+zNEygfmFrsnOGYZx6Gkxjie/H59KUqXcAHHrTUyevWjb85O7vSAkVhxzj615T8eNa1jwbcaZqvhm3a51zVIJNHMKoWby/viRcfxJlj759q9UA4J7frShgzKXjVmQ7kYj7p9c9uKYHMfDKTQLfwbY2Wi6jbzRwriXzHCS+Z1dpFY7gSSetVtLvrbXvi1qd7YyLcWdho0enS3cRzG8xlaQoGHBKg846Vsar4L8M+IZvO1HQbG7n/56vENx/Eda0LGys9JsEs9PtYrG1T7sMKBUHrwKQ7j2Urkr1PrTlb5eBg+lJ90cmkz82P19aZI5W3EFh2qbjFQE/MDUisH6E570wHBsNgjmuG+Jm6HxT8NbsdV1l7fPtJCwP8q7nA/rmvN/id9t1L4h+A9LgWMWlvcnVZZDndlMpj6Hf+lJjR6PKy+Ywx+Oaj3EkjuKJm3MSPmPpTGO9sAYqQJRkc8H2NN3cn19qTO3AJz9Kd9T9KAsIsgZuTyKGPfHXvSHj+Hn3pVcHqPw9KYhduVI68UoYdOopjsUyP5UnmZXJOfcUbAPbJGM0isV70it8wUHB96aqhT1O7PrxTuBKv3uOD/OjcDkd+tMU7unOD2oAwckcHpQIdIFbjrSKpyBSvhl6ZPamqcZBHGeB6UBYlVV20jfLn/9dRq3J7ChXOcE4P55piHBj05yaejepG6mbsc9+opvmFvmA9tuKBj1zzn16CnL8vXpTMjdx096N2O+DQIf344NBXHfI7VGHGfm6+ppWO5TgZ9KB7irlT1we2Ke7NyVAx3561GvT1PekbA/2RSCwvf6d/Snn5cMefpTGZtvC89euM0bt3LcHpTEPycdcE80keT1qNcdunp0p4YMPvd6QEuP9k/nRTfxFFK4HNN8rZGeetKGDc9BSFT3ORjvQWB+XrjOMVznWPV89selNj3FcSHJzjPTihfl4J+akyep5zzimIc2en60uB2GM9s+1MzvXHej25x6GmAu3cpUjIx09KVTuUZ7UKQe/wAx75pWwe2SDQMT1BGaZI23dtyTjmnH5cHHPpTV+bkHHFAgiYsynGz/AGc9DXI2nzfHDXWxkR6HbZ/7+PXW8buvOOtchpeW+NnijDfc0i0XPY/M5qXuaR2Z2bN1P3h29aT028d+lMX5WzwCaeo54Pt0rQyHccHaD9aOW6qQBSHj5ScjH4ikMjrkDHr1/nSAcpx0bPbFScFT34qFSWUnOKVE2sCW3AetMRNHlRg9KP4iOQetRfxAHgHpTgxTIz+tAFiO3W6V4CMrMjIQfcEVyPwrujefDHQehMMT2/Xn927L/SuxsZhHcRk8AHnp0rjPhbb/AGXQ9Z07hW07V7qIrnGFZ96n8Q1JFHVIC/Oc+hHFcf8AFS4u7OPwveWmmf21LHqygWRlEYlYowXLHgYbB59K7JYwdzRyJKByfLYHHtWd4g0NfEWjvYtObaQsssM6jJilU7kbHsetHUDFhk+JeoTCd7jQ/Dagg+Ssb3Un0LZA/KjwvbvofjDXdJLxvbT20OpMsKbI0mcsshVM/KGKhsepqNviBq+lQiHVvCWrXWqr8pfS0EtrMw6MHzlQfQjirXgnQ9Uhl1TWtZKw6zq5GYIzlbWNQRGme5HeqBHRAlmPbHTipDnGDz34NYHgrVrjWvD4e+Zf7StZpLO72jAMiHGQO2Rg/jW9u4x27cVICP2Gce1cr8TJ10+z8LanjBstdt1+iyboz/6FXTyKxbDE9MVyfxctX/4V3fXCDzfsVxbXpB/uxyqzfpmmB191GVnIHQHA7U1s7RuGPYUssomKOjHy5AGX6EZpNu08HjHTtS6kgkh+ZfuuMEGrH1HHeoNuOQ2c9acMsOeaY7HHfGezDeGNL1JVDDT75fO94pAY2H0+YflXUWrRwWdum7OxFGQe2O9UPHGm/wBp+A/EdoeZGspHT/eUbh+oqbw/NFrfhfR9Q2Am5s4pDjudgphfQ0UcZAVhk/rUvGRjJ9ahSNA3ygKfUCpTlev86QyX72O496WMnzM8Y6VHzwc0YG7A/lQSZPizwLovjf7LJqUE0F9akm31CxmaC5h9Qsi8456Hireg6FZeF9FtdK0+NltLcYXzG3OSeSxPck8k+uav8BiSMk8DFNGJCDnI7UtxoU44HVu/FC4J5yTQ6d/5U0fKMgkHHSmMdtBOSc+lN2g5B/Chm+Xqc0LwBnr60AIjenI7VNGx6g/nUKqNxx1PYGn7Agx1FAD2wxyMZpN5GMgex6VG0e6MAnH0NCxeTGqgkgfjQBJypPTHQ07264HFRsMc5Az2pOM5yQaAHsRtyBn61GzscEKaewK8Fgah53Bssp9qCHuSpGFwVbP1xxUrMW44Jz1xVcKV5zz707hZFYsfYUxkjM277uDjoKkimaNwRwe9RPjoep6Gl6KVzzQBzd18KvCl9qr6nLphWaSTz5IY53W3kkz954gdpP4V07MMYChFxgKvSowzYIzg9etOZhyp6HrSAevGMCl+6M/nzTFwFz6dDTWY7sE5GM8UAScMwHv1pDxj86jX5TjtmhsAjrg9OaaJZK7DdnPHWnI3PqOoqvjbkEF89Nx/SljSYgEBUX35piLadfrzTpNyQyhV3ZQ8H6VV+yszEm5ZQeflAoksCYSqajLC5HGVUg/1o9BHFfFlxN8PbSEnCz6lYx465HnKcfpXf3ICyEdhXCfE6Mx6D4Wt5Tvj/t+zWVl4GAT/AFru7hR5z/McH1oa1H0OT+K2f+FYeJGQDfHbeaPcqwP9K6ZZBJb27KQQ0SN19VB4qh4j09dY8Ka5YsOLiwmiB9CVPNUPAl8dU8A+G7x+ZJNPhye+QoH9KXqUtjd+1Dpwdv5imqS7E9S3emsqkHgE/wA6dtVSuBx6ZpiuLGH28IH28EGl5xll29sGuM+IfizVNPuLPw14ZtluvE+pQtMkszhIbSJeDK5xzyeBjmsPSdS8dfD+za78Z3lt4g0qOUJd3NrFse3jbAWZcAblBOGBGR15oA9P3HGAM+4oGQOP5U1mj+Ro23owDKwOQwI60xvvbQf0pjJfMO45GT7isTx9Y/2l4B8S2m7Jl0+bHH+yT/SttVDdce1KbRLyG4tm6TQvGfTlSKTJMjwrqQ1jwXoF8Mf6RYQuGPug4rSQlfl4K4rjPgvIbj4W6JHJ/rbMS2br6GORlx+QFdn8jEAhqkdmKi7T6A8jJpzLxnt703AOAOfSljUKpznr0piHRyEfeHGeMU/5ieuOOcVGFVuGPB9+lK2DgHBFUhMlVs9gR39aX+HOc+1MRSWAzx6mnP8AdyOTVEnFfGW3mk8HWF3bo0s2n6xZ3eIxzgSYJ/I1d+FtzPefDXw1NcyyXF1JZqZJZCSzHnr/ACrqUs1vopLeXBilXaQ3T61yHw1sZo/B6Wn2pozY3l1aYUDgJMwA6elA+h15Xbg5/Ogt8wPUdKqLZyRsM3Ukh7liKmSFlYh23+mR0qQJvm7/AC0pbcpA9fWmbtvUbj6UcN2xTEBbaOAKRWO0g8dxVXVNS0/RIo5b+8gs1f5U85wCx9AO9TwslxCHQl0YZDYI4plDpFLrw209c+tKrfMOPwpAM/L0B/MUBhGMgZX1zQSOOWYgHA96k3E4qIsN2cYNQTaha2jYlmy452R/M35CgC6rEckg1x3iaMx/FnwjISBHcWF3Dg/3lZGH6E1tN4gXBMWn3k4HXEYU/kTXC+JvEtxqPxX+HqjTbyytFlvI/OukCh2aAnA5P92hh1PTZMbs9+4pmNzZB59+lKwHIP8A+um7Rt4xj3qSiZE/PvTcjuQBTeN2R1oIVuCNwPJGKAFkbkDr9O1IBtweM4+93pixjPOcdqd8qnA9ORTJCQnofzAzSLjIzyOnI4pysG6Y9DSbF6tlfcUgHgjjA3J3pv8AFkmgKvUU1tuTxyeKAJFbJyMA0pXcCRx7U1eM4GR/KlyVzjjtnFUAc7QM8e9DKN2c/lRwGo/hA6c0gEUtyV+Y9hQQyyHK49BnNJwM5BA+tOXp7UwEMxXtuPpSKWbLbTn+VL5aJ2wDSqeQMdqYhV7bjT2zuIPNR7t2QOR3zRx25/pQIXcQMdu4NHCj2PvSbc849uKay/Lj9KBoe2Oo4P1po564z6ZpixiPquc9c1Iy/LnGAKQCsx2k5yaTngE/SmsDtwMZ69aVfu84B9qYyQZzyB9fSm9JAadGf4cc9aYwwTkcfSpJJPx/lRUO6L/nm1FFgMQN8xzzxUbPsOcZ9BSemOcHmpAO+MtWCOoauWyaPuqDnNNZiykAqPUn+VCt8ufvAdu1MB3O73PNPPbA5pGXgDqaC24YOTTuAm4/kKGUNg4yPXNIuM46CjaoYHpSAcZCBjGQTximeX8xNHHUZIHGPWkYlipAG306UAOSPc23GD61xmgfP8ZvGp6pHY2cZx24Jrs4m2sMHK5zXE+FWJ+LnxCwSAEs1Gf+uZNS90aR2Z2nK5BPHf6U3zNrc/d9QacoBzupu0MSFGfb0q0ZkrZb7xH1zwaR3URk9O3SmOiFDnkZ53HkUqsu0Z5+lMSHq37tfl/OntIMknI/Cm/dA75/Sjls54P50AP3dT1PajqQTyM+lRrlTkcc8inruZiO/bFAEgJjOVHPv1rj9b+E3h3xDr11qt89/vuirT2cN48UEjKu0MyL1OB61t33ijQdMmaK81yxtrhDho5JgHX8OtJZ+JtB1WUJZ6xZXUnZUnGT+FJhYraH4D8P+GZ1m0qwNkRwfLlfDfUZ5re8z5hknOODnrSSKYZMEEMByPX2pPvdMmgZMLhuqnBz2NUtYk1ePSp5dES2m1JDujhvM7JMdVyOhPY1MrBWGRkY6rSrIfU5ouBz/gey1OOPWb3VtOXS7nUr03QsklEvkjaF+8ODnGfxro4yGyGzwai/5aFs5yuNpqTcG/Djk0DOa1x/H1xcyx6NB4esrXPy3F9JLMxHqVUDB/Guf1HwN8QfFFnPY69400+HS7hds9ppWnbDIncb3JIBr0UttUA9O9K3sfTHtQAyC2+y2cEKsXSJFQHqTgYpzMVBz2HTvTWwx6dPek3d9vNMkbA3mKrHK5/vGpldl4IwR79aYrKQQvHPX0prL1HU+op2AtrGLqGeArlZYnQD6gjFcf8ACO6Fx8M9D6/uFe2Pt5bsv9K7DT3Hnpk49K4j4Rx/ZfDus6dk4sNau4sd9pfcB+TUAdmc4wG/A0iqWPTIHvQoKscc84xSsy+vPrSGScdM/QVj+KPFVv4TtbbdazalqN1IY7TT7UZmnbvj0A7k1rqQw+Yt+Fc7Gsc3xWmMgDPaaQht93O3fI28j34H6UCRNZeN1udFkvJtA1aC9t5PKutMWIPPCeu4AH517grmtLRdc03xPpqajpF4t3aMShZVIZWHBVlOCrDuDV4zSCQEH5s/e71ysltF4f8Aihaz2qCGDxJay/ao0AANxCARJgdypIJ74oGdN5hbB9fbGKXkdu3aiRdrnBxntmmsQVIHGPegVxwHYkBv71J1JPTtjrmkViwIxgdPpTVUKp5IGetAXHw8M2T8ucipPwqIKGY85HfJpwG7jk/yoGLt3Ec4BFGTGuMYA6j8KBjbt96UNxuBP4UAIX/L1pFk3KdvTH40j469qAMDkGgTFVsH+7T5FyFxzTVXcBg/nS9Gxjd2oJEALBiV/WnbTtycEA8mlXlueDWL4g1y50fxJ4Zhwo0/UJJraV8ciQJuTn3waCzYY9CABmnGTt94Ukg/eEY47GmNjIOM+lAE4yyjBBI4z6Um4rywOR1pg6nqCP1pOWB5zjqKBWF34PqDxSgbeAOKaWGegC0eYE6Dj2oGOBIwVPHfNKV3EHHHUUoYYP8AKquqaqND0XUtSZdy2VtJP0/uqSP1oJLc0iwxzAsJpY13vFH8z4x/d61X0vUrPXNOjvNPuFuLViV3KeVYdVYdiD2Nct8OvBVlp2mWGu30RuvE9/H9rutQkcmTc4ztHOAADgDHak8Q2/8AwhPjPTPEVkPL03WLhdP1e1X7hkbiKcDs27gnvmqFa52yMW6kD6VOyOEIwcnuRULKIWwPuqelYd94Pu7q6lurPxhr2lGVt/kRyRSwgn0R0PHtmgnyMv4rTtcWOgaDZjz9XvtSguI4FGSsUb7nc+g4x+NdrcYaRju/Kue8O+EZdD1m71jUNcn8Q6nNCtulzc2yRGKMEnaAnHJPNbu7NMZLbqbhmgPSRSh49RiuJ+EE0jfDbSrdzl7OS4tPwjlZB+gFdrEwjmDk9+cGvMo4/E/wrur0w6SniTwjcXkt0DYEi/tTI25vkJw6g+nNJgj0bdyDn6CnblPJ61zmh/ETwx4p2JZaqkd5nH2O7UwTg9MFGxzW+cbiOVI6ilYGcbq2qab4b+Lseo6reW9hb3WgNHHNdOEUFJhuUE98MpxUlx8XvBF9BdWH9pPrEc8bxSw2NnNPuUggjhcHr2p3xC8CR+Jf7K163sIdT1jQ5DLb2dzzFcRkYeMg5GSOQccECs/UPihFq2ntofg7Sr5PEF4PJZbiyaCPTlPDO7kAEqM425ycU2US/BfxNF4j+HWmKjTSNZq9tvliZN6o7Kp5/wBkD3rthhZPeuYuYX+FfhrQ49PjS50Gx2wX+R+9UMQBMD6bic/WupO1RkHhuR75pCBW3ZY+nap7WT98jD1qBWDe3pT0DCRQQc9RimiThvhTus7XxfpjY32PiG7QBf7rkSD/AND/AErs1y2AeCa43wJhPiF8TYlGE/tG3f8A4E0AJ/lXaK6qPU9OKksVAF54BBz+NLu4I4P9KQYZT14oDe31oESZwOvHrSH7vJyfamq2HPpS8ZyB1qkSCtuwPyxUxztAxj8KZtG2lGVPNUInt/lZTnODXK+CY/suteN7BTnydX+0qP8AZmiR8/TO78q6WGbkZXBzyDXKJ/xKfjNfLgxxazo0cq88GSByrD/vlxRcR1TfNyeCO3rTt3p+tRMdx55wetPJYcrjI/vDIpAPbDfWnwhfMVSOc1Hj5RwN3f0/CpLYfvg23ODzQNHndjoeoeLJrzxRZX0Fvqv2iWGzW+gWe3WGNim3BGVyQSWU55rK8F+Pr34s+J5bYMdEt9AcfbLS3nBe7mDFdysPvQDHXuevSo31q9i1q6+GFgxs764uZrk6juUBbJzvIj7+ZlmXGOAM1ueKPDNt4X1n4cTaZEbRrfUG0vCfL5lvJC7Mrf3gGQN9TTYzvGkLybThT/epuNvQ4PeiSQBtu3kGmrIFyT07E0CZIm1m4bmkjtba3LtDAqO5yzf/AF6jcYI+bjvUygY5xntikySXe3Qnn+8K4v4rO0MPhHUCMiy8QWxJ77ZA0f8ANhXYqM5/WuN+NG5fhhql1Gv7yxltr1fX93Ojf0ouB10zfvCDkDPFMkbpjp60NItxDDMrZEiBw3sRmkVgcgjae/NAx4A24zz1GaVfmUZxkVHuO7AFIpwwPTPXJoGifPTBz6imuDkHPAGTSKwwBgfnS9M9hii4WBWGM4APam5LcE5Pek4wSOvpTUIKYHXPr/KgRIBtzij5i2ePcYpqybGw4z/SnrgZ5zQCFwdw+bb6+9KZNvA/KmsduMj8KP4j0zQABicnsO1B+cnb83GcdMUM3y+4pFyrYA565qhDY3yCG5x2PUfWnZzjnn2qNcKzseSSBtqVdvQ9hxxUgHzN0OaYTuwQcDv7UrbWyD8wzzSqpXjuKdwHIuFx1HqRQvy9+T0obleOT9aRW9PyoAl3BVOTio94IwOlNbJGcfjTOi5K4+lOwrkwbdxjANCnaw6A+lNXn3PrRkMQSAWHrUgDNz8vXNO3FsD9B3pr7mwcDBHWhV2ryPpxTGPzgDnj+VN8wMx4xjpSFjnspHUDoaXII4GB+VCEx/mj/OKKi2n+7+lFUIwdwXGFx3zR/FkZ5pO2ODQfuggbq5zqEZ+wwW7Cl3DaPmx7jpTG5P09KdgHcwHzHr70AP3EDg9e+c5oZtuMg+lNVjuJAx7UobduB/WgBTnacHH1o3bcEYx9aaqngMMr60bd+AT9MUAPVh1yeaTduf0Ydx3pkankHAPvRv29Bg9TzzQA6HmQc/pXGeD9rfFL4jv/ALdkv/kI12Sr86HrnjnrXE+Bsn4ifEJ8fJ9ptlB+kXP6EUjSGzO0WTc+B1z3olyoyOvrTm/d54wKbuUE85UVRmNMhaQds8jI60s8sNrC888qwxJ1kkO0DHWkZkt0kuJsiONSxPfGK5ax0WfxpMNV1+Irp6tiy0tshAueHkHdj6dqEIuyfErw1GxWO+e6bPP2W3eUfmoqWL4keF5iFbVVtn6Yuonh/wDQgK24FjgVY7eKOBFHyqqgY9qlkxcRFLmOOZOhVowVouhkULRXUHmwSx3ULcpJEwYEfUVNGD5gGwj0Fc3cfD/QpLhrixS40W6zzLpsxiyfdfun8qgk8B3FxxP4x165gPWNpI0BH1VQf1pgT+IPEPhbw3ePPe21ndaxIeLa2gWW5mPYev51z3iLULvxBoqaMfDNnaa7qpZYoZEWQ2dueDNIQPlbB4A712GgeEdH8MKzafYKkjHL3Ep3yt7ljzWjHb2sN1cXUcW27uMK8p+8QB09qLgRadZ/2NpVlYNNLctbQrEZpSSz4GMk+tSeceGIIzxzUzYYk42nvTG2tkLyp7dqTFqIrDkkEH86aZDuynKg8jFPGEAwD07cUbN3B5z60rgLu3MSev8AKl3/AC8j6U3aeC33s8CgAjgjAoGPc5Xrz0o3HjgCmsyquOeaaGYxjnHoaaGPUs3zEHOaGYt0FG7gZxntihnG4EDaSPzoEIs3QbckU4FlY8Z5pI9nDDgd/Wn7uPve4NMB9uxRx8o+U5HNcd4NJs/Hvj/TwCVa5t71R7yRYP8A6DXW5CsQRznmuK8TaD4vtfGEuveE20dze2kdtd22rFwp2ElWUoOvJ60DO3bcG4GT7d6Ty36EYeuHh0/4q6hkXereHNIQ/wDPpbyTt+BYitjRPDPiTS7xbnUfGlxq8X8dq1jHHGfYEcigR0Ks23aRt/2VrnvGMN3pt9p3iewt2un05WivLeLl5bZvvFR3K4DY9jXRM2TkKcGnxSGNgQcHrmgCpa+IdK1KwTUrXVbGbT3G7zjKqgD3BOV+hHFc7pGpJ4z8Xpq9kC+jaTHJb2tzjC3Er4DsvsAMZ75NaF54D8K6lfPeXPhywnuWOTKYRlj6kdDWzGsdrBHFBGkMCgBY0GAuOwGKAHFuvPPak84n+HBHTPpSEjOBxnt0FO3Fm5IzQSK2/wDhA57GmSZILAfNnt0pwYt/D1pN5DKRwCMHmgY5R6DFCs+7HHNNX5fYU5SNxwMY4FNB6CCQrkNknsaeijcc8ZHahmAwAMk0ikNjNILiOwRMnPHXbyaVX3YbJGfwNCnqMdO/ekCgqSfvDoCOtAbjxntj8KUb/vE4OMUxpPl6EKOop4YcZPtQMbyrYzj8K534mWdxceBbq8gGbjS5I9Qixwf3bAsPxXNdJ8v93BB/Oholmt54JV8yGZGjkjJwCrAg/pQBDb3sWqWFrf27hre6iWZGB4IIz/WnK23AHfoDWfoOhW/hnQbLR7SSaW0tE2RtcEMwXPAyB2q/90DI+X1oAcrFV5OKVlZtvOT/ADpqyhsADIxw1OVFkUkAZ/WgAQ8nIP58Uscm7cCAT25pQw2gBePfmkOOtBIp3kcHDVFqWnnXNHv9OlAUXdu8BPb5hipQ3zcHJp3O7dg8mgLHNfDvxEmq6THo966WviHSVFreWcrBWyvAkXPVWGDkVU8c6lBrl/o/hbT7mK8vmv4b27ELBxbQxNvJYjgEnAAPrW14m8F+HPGTo+t6Pb38sa7UmYskgHpuUg4qxoPhjRfCdm1vommwWEbn5/LBLP8A7zHk/iaANSebzJCR6880gb1Y4qPBZmOTTlYkbQaCCbLc4pkeVHzfNSLn179c07f/ABAVSKsKHwcHjNO81o5AFIFR7cPuHQ9eMc0g+ZgT0xQIc8cLzCR4IZJezmMbh+PWhs85yPamuRwewFNWQ87uvTmkMmV2GCGwe3p+FEskknRgPbpmolYL069qf5gXPHWmBx/xF8S6NH4V13Rm1GCXVrq2a1i08H988jD5cL16nr7V1FpFJb6bYQ3BzcR28au3qwUA1KyxtL5klvE0y/ckaMFh+NOk/eN2B71Ityhqk+vQsF0ew025yPv3tw6AfgqnNc3Jo3xK1KTbP4r0bQ7Vuq6Rp5eYD0Dy5x9QK7NHKspxnsKGYcZ596YHOeEfBdt4Jt9Q2aheare6hN9oury+cNLK+ABkjsB2reVSSCRx3pzYXk5z60zdt56gdKRQ5WJJHA9Kf8/Y8E9MVFE4kXdgqfenbtrYPU+/FMSHc7uce3FG51GS2R1z6UHk8/yoX5R8wpkhuJz2OepFPBOeT196TcDgqMr70pPzYAx6UwHqwGASPauY8fM2n6h4N11uIrDUTbXDZ6Qzpsyf+BbK6VRu+8Mc+lVfEWh2nibw/qGjXokW1vIjG7RnDL3DKexBAI+lBJV8ReMPDvhW4aPWdcsdMmzkRTzAOf8AgI5qnpXxJ8I61cLb2XijTZbh+FhaYIzfQNjNL4V+GXhnwfaqtppcV1cP/rb69HnTyH+8zNmtLUvDOh67bPbajpFjcwMMYeBcj6HGQfpQUaTxvHxgEHowNRTXMtja3FwiCWSONmWNersBwPzqlo2kw+H9Jg0+1eaS2gyIxO5dlUnIXJ7DoPar+30/HmkI5LR/ANjqXhWIa1Gz6tdy/bp76MlJ4pz0KMOVwMDHoKtaf4KvI9bsNR1bxFda7Hpob7DDNEkflMwwXYqBvbGQCe1dKrHaT1xTRnacZxTAY+c5Yg570is2SMD+lSj5uwz/AHaZtGScZPtSuMG4Ap8fyNz681HIFynBPNOyFKjI54GaZJhay3ja1labSU0PV7UHItJlkgmx6B9xGfwrjvFXxWtbrw3rmgeI/D2teHdQvrOW1iXyPtEMjOpC7ZEHTOO1ep7vUYI9+tMa6dlKnkD+FqYjI8LrdxeENDjvk2Xy2cSzRsPusEGQavt5m04ZdmOB3zUzSA5z09jTNvrgg9DSGMXftG7G7GeKepODS88Yz60hYqxwMH0FIAz04yKUM3NIzBewx79qUs36feoGObIbIOCe4pu5l4zx1BpMlvU47UuRtOeB6UIkCzHqRS7j9f6CmAEEj9aVWK4wRn1IyKYEgk2jHWjceQ3JNRN82GC4PpT1bbxg0APY/MD2pgY7uQePyp5LEHvSBiq44z9OlFwGq/zH/CnZZiCDxmomY+YcDgfwmnrzg4oARs5zn6UjNI3A27uvNK20/dJx160jBVK9N1NCYvndAxye9O56r19RTdqj+EHvSxyBm+VcexpAiRd/HOMe9MHOfX0NO6Y67fek9ePxpjGHdtwvTvSjeW42kHvjpTiPlAHy0nPBGfpSDQfuZVye1DSMy8DPemgkr6j1zSqC3bmgBNx57E89aTey8/eFDJuXGPmpVJxwMU0JjvMb+9RRhff9KKYjnzht2OfoaaxB5Jx70uMNjHXqP60PIsaBsjaOuawOoZLt+9jjr71KpG3IJbI5pud2c85FNT75yMfjQA/7uOfbNLtweT075pu7a3Tn+dM24Bxk+vagZLk8bCR7Gk47DgcUwHbggAdjnilDcYYYYdadxD927Ock0jKVYEDr3pjSbpOwGMYqQKm05HUZ96kNzC8XeO9G8Bw2E+sXDQLeS+SjIu7aeTuIHO0Y5NYnw+nhuvF3j6WGVZopNQi2tGcqR5KkYP41D40sLe++MXw4SeKOVdl2THIAQylNuMH615UqXXhLw38Uk8NalJa3Xh7Xre8iaM7la3ZVQxt6qFz/AN8iq7Fx2Z9IsVwrSOiBjtAYgZbsPrUFxdW+ntEtzPHD5zeXGrnBdvQVwPjCHxJq3gG+ivrK1umjijvbbULGYqSykNhozyDj0NaOsarbajq/gXWXIk0+VHBZRkCRk+X8eMfjRYn0OyUCRmidAIjkZb7uPf2qVYmXAHHAOByMY4xXNReNBfXUEF34f1Cz0rUJPsa31woT53BAJXO4DPftWd4Gu2i8D3+kXN4keoaW1xYgySDeuM7Dzz0xSsFja1fxfBpuox6VYxjUtXkGfs69Ih/ec9h+taOnpfsxe/uYzNtz5EfAH+NcP8NpNRu9BtdQtrLT0jniVb3U2nJuHlX5XDrjgggjr0wa75WiutkyMJQB8klA7DNQ1KDSNJvNRuSywWsbSybeTtArh7z4zJpt5bRXuiX2mC9hD2X2xQBcSEjaoYZHIYGu21fSo9e0LUdMc4S8geEkjpuFeb68Lrxx4JsfB1zp00XiC0nQG5eIiKDyj8siv0O4Y4HrzVCOx0/SfFMl4l3qOvJGmc/2fb2wEe30LHJ/Gul3ZcjP1rivAdn4ouGutS8UXLRT7vKh06BwYo0XgMT3J6812LEnb0J559ql7iMvxd4ik8L6TbzwWovbu6uFtLePdtXe3Qsew61Auuf2fo95q2s6jG9rZpukeBMRL64PU81B8SvDsvi7wc9naoZLmGeO5SMPtL7WBKg9iRkfjVDxJDc+Lvhp4g0qz0e4sDLp7RQW8+ATIOgAH0piub914s0uHR7PVI7hbuyvJ47eOWBty7n+7n0rC8b+Jp28U6L4N0y9bTdS1QvLJdKgLRxIpPy545OKx9W8DWifD61vrDTJNP1SNLe5nsrUkBpE2lvkHG7jt61N438MaxqnjLwh418P20NzfWETxT2V3KYQ8brgc4OCD7U9CjpfAurXeq6LLDqcizanp9w9ncyKMb2U4DY9xzW/6dqwfCOi3ukQ6hd6l5a6jqNybmWOE5RGIxgHvwBzW5t3ckfWkwHMu75ufY0ip3LZ9qjzsGM8Hjp0qTceB1X1pADKGwMj1pdu3nOVprbmDbT359KGUyAAnacfeFMQudn+NLvVs5PPqKZ82CfTrRgEd844zTGSDGflJB6GnK3uag3bcbhzUqt5eOfzpMRK0h29cn9aN3cck+lNzuU4OKIyV75/pQhjwxJ7YHNIGDdBu/pTWwcYO3mkVvQUIRMW3sCpxTcL69e1R7cYAGcc470/73IY+4pgJtHHpQ21uN30Io43DORjtmkZtzH+9QAm/wAtQTzj3xUjeueQOtJtCszA8H+E9KXG4Z524oEhq42nPKn9KftUcA45pqrjgtn0NDYycjHv2oAVpCu1AMqe/pS4I4zj1o2lhuHy9sY4pPM6YyQetAxx7EnFDHH8Qpu7djnNK0i4BJ/WmAJwOTkD9aVTu6cduKAwYn0+tI25CP4lJ9elIBxYgFS2aXGF+Yk++DQCAcdeOpoDHac4+vrQMjVvm+YDPrTny2QT1FIcMQcYHQ5okwp65OOKBCLhVxjpyfal3fTnp60nXgnn19aTyyMsPvHqM5NAh/zLtOeOcmnle+c596jViFCkZGeafuGBg0CBVwuWPf8AGnk8jknnrUXIxnC0vLcg+1AyZcbuRgdeaUMFz3H1qNQRyfXrQpK4ZW5zxmgLkjfdJB/EUijf1wMj86anPB6n0pyZVF4OOgoJFXo3IPelztYCk3DHt3NJu5z0B6E0ASN+vtQudqgntUTKdwIODjv2pWB44oGP65wMH07VGcHI7njIpxY8cEU1VA5z70xDljCogBY46mjywTlST7etAkzwR09qa21Vyfu0hjpG9Pu56elKDuI5zjpUSzbh2z69qNxEgHb+7igViZmZhngfjTG+7znI9D1pNxOSDgfrShhsHOPfvQAwkMMNu9QDSxllBwRx0NIwLYDc+9CJ8u00ACH5mJALD0FP+9hhnHfNMY/KO5A9MUq4C4A/WgY7I3Yzx6k0ueS2flzyaY2B0xn3piht3Ue61XQRY3hgcUKp7dKiboQRx6elTK3yjPWkSC+5LD8qlWQhMElh6moeF5JxTlYY9adwHFj3PFBk5wTxjoKYrZyB06ikaRfTmiwD1wVB9+1ODDcQDnFRsz4BjCjB5z6VI0h4HegAyG+tNG6NWDHbSls4BPTpio9pVfnOTnqtMCRWxyDx/OkdyvI69qjYliP5Uv8AFg9ewFACM/zAZ5+lSblbBPJHJHcVG68jjgU8t/F0HrQJjvMGTkk+1N37snqfWo2jLMBnbx+dL5Z2jkb/AKcUEicsAM+/FPGFyM7R2FM2/KPUdaVWDHnNAEn8PLZ75pu4Z6ZoUHpjjtQ2HbA69akYNjGR09KFYH73A7U3cPLIxgfSlC/Lz0plD/lVjjp/dNBxtIIzSfw5BANNWQMpVutArCGNdpPT0U1IMAHsB2qMuSgOMjNPjwew6etAkNOVXuwzTvQ9B9OtN6dT+VO9MdPSmDHbfl4ODmjd780M33u+KaFG0YbI7H+lIAZvmPNM3EN83ApfuHO0ZoU7pAQuDTAVB5nIBBHSlwM4wR/OkVuvy896duG3HU9jQFhVXacA5Hb1pzNu5Pp+NMVjwTSlv9nikIXd82OQPel9ugPA96hXO7qD9e1SKwzyc0xjuTxj60hyuOfyp27BJzj3prZ9cZoJsMZW6jIHc9qcI+M5IPY05m6ijPGT1+nAoGJkhc9T3xTwdq8jHtTNw6Hj0OaXcG+9zQAu4elFJ5gooA54rt2tx/vUuwt8uMr1ye9MEi7ipxj9KcG+YDPy49OaxOgQNjqNvbrS8bcfeHTFK6k8/hTQfUfN60AKWC/e49DTtwA3A+w5pu5sbs5PTFEZDMCOnemMcqj5QzgO5+VWPJoZQpxnpXnPia4k17xZ4os7meSzj0OwhurMRvhmlduG9+Rj8a9A0+SW402xluMCV41Zz6tgZp9BEn3yQP51JwjA4wenPNcq2savrGvanY25ttP06wdUe535ckgHGO1Pt/FlkuvWuh2V1He3hG+aaSTgKOw9WPoKLXGM8afDe08c6tod9LfXdhd6Y7FGtZNhdG+8pPUVyXw48E6fda18S45Y8WV7fmxmtexVUUg59csa9SW+hivxbeYpuWjMywMfm2jv/SvLvhF4ws7o6uzxyxy6tr1zCquuGWRFGQ3p0pdS4/Cz1C2tktbOK1jT9xHGIhG390DGPyrM/wCEI0dtEn0kWTLYSN5gRHI8ts5DKf4SD0xV7VJbuz0+7lsIVurtF/dROdoY+9cR4hPiDT4dJuNd1Ro7W8u1t5YbH5FiDA4O7qecCmQdJa+D2jvLWa/1i91g253W63TA+WexOOpHqa0LnQNEuNajvLmws21R/mSWRRvfHf8ADiptL0O10fENuXO7kmVy7HnOck1zHhrHiH4ha3rMg3WtjtsLXPTIOXI/EgfhUhewt94X8LWviKO3e8l0+71B/M/s+G4ZIZnx1KDjJA/GupW3FuiRIoRIxtCYry37XPr2seOtL+yvNrlrrEJtZk58qMIGVvYDP6mu2+HeoXuseFbS4v5/Ovo5ZIZpOmSrEZx9MVVg1RNceNNH0/xVa+HLi7EOq3MfmxIQdrei56Z4PB64rWvNQi02F5Lu6jgTphz6eleJeLro6h8TvGGhSWE15qdxZWk+lvapkwum4789v8iusg064+IXg1NcuJVOtQWckEHkA/JKP7yn+LIosJneWOpRanC8se8RL0kf5Qw9earW+vWV/PstJXuQpwzouUBHbNcQ2u61rV/a+HptL+1R3mnRTOrT+S8Ui43g/wB5T6V3+l2v9m2MFqUhgkTGY4Oi0wLqQszKVOOakOduM5+nXP8A+usfxRoNt4k0kxXd5c6fDCfOM1rKY2XA6kjtU/h37HHodithLJcWaxgRzSElnX1JNILE9xq9na30dpNqNvBeSjKwySBXZfUD61LvXzhbGZBdY3+TvG4j1xXmXxB0OxvfjP4Yj1K1hvNP1exltnSZBkOh3KVbqrcnkEUat4av/AfiTw9q8eoy6jo8NwLUfajma3RzgJu/iXOOvSmhdTuNY8W6N4dWIajqMcJaRYWAbdsLdC2Og9zWJfePPM8U2vh7SIt9zLvP2q5QiFguN231IBH41l+GdD8Otoniqw12K3a9FxPFevcY80q2TGR3xjGMVHoOn6sq/Da4vUae6t/PtvMYfM0JU7M++0D8qLFHosm/1+frhRTIL+0vr67sILqOW+tQrXFup+eMMMjI96s3Ec0ccjRD97j5Qw7/AErxXRfCmp+Jvih4pv7m9uPD2vWEUCQX1jnZIpyTuQ8MMYH4VNhHtKxksQNrFfvLmq91qFhp9nJeXWoW9vZR5LTSSjaMdRXlfiHwT4s8H6J4hk0u+ufEZ1hBLdzZEdxFICNxjA7FeMcYrC1KPwhqnhlLrQ5fsWvWsqXNnpMiPKxlXAZJEbj5sHPHXBppDPV9J8bWHiJpnsA7aTbpl9VlHlxBvQbuT9a3ofLuolkhmSWNxlJo2DKfcGvGtY1C4gs30nWYZHt7PVo7+WzjjLiS0kXLJgdVRs8fSuq0e50+68QQx+DJCmjCzm+1wQgiGOQj92Vz0bJOcU7AQa18Wri21C5k0bSF1PRNLuY7XUL+STZl2YKViHcrnnPpXozD5UKZ2MNwB7DFfLfw31q/0nwpDoepaZqN/pdnr1xNe3ljCZWdlbKq4znqc/lXvdj8UfDuoyIitqMMjcBZtPlQZ+u2lYDqhwRzj0oLc+mP1qMOsgDg5DcjmlwG5zx060CHqw3c7gfSnYBHB79KjTDZI7dTjpT1BXALZ96YEgO2M8fjS4DDcMZ9aaPWlHGMfjSAay4IJOKd168D1zTTnccHP5cUKvBA6d6YCsvUZyKTB28O31pQHXPTH60qyB427CgQwRtIwPI7YzTxGNpB+pz/AEojA24z1PrT++GOR04oGNVhzyR6YNKSdpGaTb2Axik53beM/wB2gBy7dowcH3pu3knHH1pF+Vjn+dSFV3ZzkcdR1oAb8qoB26Uu0RxgA4NHGOeDjpRwecg0ADKrKS+7P1pcheAMikDfMcHIHAxSNuYgr0FAD8joQfr60jL8oAJpF5PTB6YqQrtU7iD/APqoAjVVVf72ODSZ3Zwe/BWnbhg4Hy9jSKBkDoeoNAtRNp4zz6mnL82e34Unzc9/ajqvGcZ9KBDwN3BXp7U1slGCvtYggN6UpTLEqdpPfvTWUMc5wfSgB24Kqhn+YYG7OM+9JsXeTjD9TzTd25T1x0wadG2Iwcfr0oAfGyhSxBH9KMkYA5XsetDEshByT69qVWPAxj60wHBMtkliP9rpQw2qMjjHSkZm+n4UBmBySQelIBVIXAJxT8BW68mo8FWyfmpVz1x16bqAH7dpHzc++aYVDKQTkHpjrTl9zgfypu7j3IwfegBFHyL1JFI8anjrnqKVGxn724/5xSHkEd/SgBvkqvQcf3aXaPr9acvbNDMC2fyoAVccnkHNNYjPI5zijdz1470AHbyx5OaAEB4ODkelMjU8g9PWpcnrnNNVhnP3cUAG0ZHXcKCE4IGB6Uudw4x7ikVVkbJPQ9BTEDIGJByRj8qURrjqwb6cU1iQ2DyMUqnbg9x1WjcY7jd+u7sakC/Kccc1AGDDH3fapN33R1BpCBmDYHT1FOVU4GDxyKauduc8dKd948dcd6BWH7VyDjDfzpqxlF+XA9vWgsVx/hTo/lBOcj6fyp3AcF+XHIzRtXkFse9Bb2FHHTP/ANegBvlhccZ79aaq4BA+9TmyDkHI7imq21CSwwDz60CBPlHFO2Bsk8kcBqTjaWyMnoR0pBnpkA0AJJmNT257UqkNFgdc/SlVhzn8/WgD17enai4hVUdc5+lN2jkd/wBaU5bocEUu48c/pTQyL7x56Y5NOVVVsYG7GdtKrBlx1B70m3aR0K0xEgwpHPPTFMZV3YPGBxzT93br/SmsTxuAx65pAJwB833s/hRtC54x/KlzkYA/OkkYHqfpSGG4bhzg+lC/d6k+lNVi4OMY75PNOyc5yM/zqhBu8vC/eFAUL09Owpo+Xjv6U77uP4R6UABXjdy4PbNI3zY6j8eKTecHH4UBmXk7c5oJJPlwCTkH9KRUReFPTtnio9vzE9+4ojbao6D29KADcVOBkj6U5UVmDbOe/vStINw+bk0vzDlT/DznpQAuQOV+U0u3bz/Kod5ZgQAo7jP61JyucnNADt43be3rT1Ibj1qNWz0P0PpSrINvXFADWQD3PT60mSHbggUM+V45xSLnOMds0wJY9r5x1xzTBN5bbdrEHnjtUiYGPXPWk44J5Oc9KQA2M8jHpS7skr/+o1G0oIODkd6bEyyf4YoDUmX0IzSthsAZIqONjyOMdjSs2zBJ2n2pALg/3aKTPvRRqBiYDIMn3prD5Ww2M+2aarNyORQvpziszpJFKnG0ZHcUhwvvSBwvBHsO1I7DAIHJ9qQhQW8sKRhuee1CMQQRjNNDA4DcjPPanqMrtAzimBzfib4caP4u1iPVbuS6tr6OIQGS2mMe9ASwDAdcE0y+0TUfCVudQ0bUrjUI4MNLp90Q4kTuFPUHFdOPujHY/jTlyF+8c9qLjPO20SbTPFl5rKWF3qen6ksdxFCjYWOTA4cfTA/CpdW8C2GnaNNc2/hdby+upTJN9kfbNCxyQ6E9wfeu/wDObaQCR/IUyN33Ag/MOhp3YHI/2TryR+HPEcaC51qygMF5ZMQrXERxnB6BuAea868B6Pf3HhTWfENhZs+o2/iu61I2X8RUHayj32/yr3y0bdIh9/yrhPg3j/hHNccHhtavCD/20NK+pS+Fly1+IZ16ZItD0q8llcjzGvImiji9eSOfwrY8RaGnibw/c6ZcSCNpQpWQDOxwcgj6GtVpjtA3YP8Aexio9xLEk8+nakQMs43t7SGCSczSpEEM3fOOtZ/hjQx4X0k2nnm5dpmnM23GSzE1faQbiQcinsRkHJI9DQPyMnT/AAjbab46vvE9vcOlzfWyQXNtjKsVPyvn1/xqjL8N9JfVnvY7q/QSN5rWsc7LGWz1wDXS/wCs77aVRtLHd7etK7Az4fDulW+vNrcMO3UWgFs0hY5KA8Ain6Ro1noX2oWisi3UpuJFZuAx6kelW1PzHJ6frSNIM/49qsRleJPCNj4nktria4urC+tsiK7spdkgU9Vz6VZ0fR7fR7fy4pJp5m/1ktw+526c5q55nPPPHNIcjo/BNAyvrmlrrmg32mGdrb7VGYvNUZK561YsbaPT7C2tYwAkKLGvboMZpysAFLED1bP86ARuPGenbg0hGH450s3SaVqdto0ms6lpdwZrZI5xEVJBBOT1HNYOtXfjvxVpcljL4S020gmwd09+xZTng4UdRXfCQqpGcevNEdw7YJbI6U7sR5nefDvxnr9xBLqOq6HYywoIxLb2hllKjoGZuuK01+Feo33kf2p451i4SI7lS32xBeP4SBxXbtJ1IP5Hk0okI5zzRcdzk7f4X6FFdJNNdatfzKeJLm/kI47kAiuv4U5xngAE9SPSomI2k4/KnLhlU9RSBaj45GVhggfjzTBa2izNMLSFJWPLrEASfXNLx93JP1pu8xsR0JoGT7lDh2VWbG3djnHp9KjjRLVsxRIgPLbFAzSBunPJoOVXGTz1FAEOl6dZaHHOmn2y23nymaQL/E56mrcl4XI3KCKh3Ad+aAe+Bj2FGoDlxyV/D2pv8X19O9Ish8zHQjn60it8pI9TzVCHquGJLEe1OV+g3ZHrTEOO+SacWUY54NAD9w3Y6mkXO7IPSkVi3bNC46Y4zQA5tvPVWJzSINvGSRnvS+x/OnN/d4x60AO29zx3FRlh06D1xxSN5mPvnH92jbxk/Mp9aAAMRyB14AqVR1IOB6EcVEqhRgHIz3p2NvQ5HtQGo/dznFLtXPP4NTcspA6HHPuKGkHQ0AO+v6UZVW6Hr35pvmDbx0PamqxHGdw7etAEn3uo+hpASrcKfwpnmbsgAhqXcHHTB75FAEoRWJfofrxUZ3KvqvcLSRjyxgksM5pWk+bnIz+tJALu6YOR29aevzD0PvUa7uh456Ypd3qC3PIpiE2CPBUnGcspGacuetM37s/L/wACp24KuenfNAXHbs89D26Uq5Vc5AqJZM59u2KfGwwePvdAaBi8/wAJye9NbCsOOvGQKe2U98d6jZueO/IxmgBUZVYE8Ed88VL94dOSPrUfA+Y85/hIpxYnk8+1AmPUZHzYxjoKG7D8itQ+pPNDMykBfxpkkiuVXHX04qTfkkFMd6iDhuTkHOMU75txDHjrmkMdjdnHNJuO70FG5XYleCO1Q/dkDYJB7YoAn2/MeQRj86aM7SSBn0pmMt8q5H8s1JuAPJI47igBeNo46Gm+ZhmDNtpoYFmHAxSs7NkYwccH1oAGJ28Nn60ScBST/n0pGbCgjrnBzSN8yggHIHQd6AFznuc0LndnufyojO5ckYPuKd8vH6YoGLnzCMDae4qMseMDilZtzAcY/Kg8r1+tAhxy2C2c9KT7zDbkH1o3Bc45z29Ka2WbggD39aAEJ3u2RginLjg42/1pCu05BwMc5qKaQooCqS3X60egiYsFb5utKxEYG7g4qBmEg4GGI5GKVZBHHhs/LwMjr+FMCeJguAMipQQuM8iqiSAkfwnr0qRZBnB3AnvSAmPUkn2HvR5pzjBPv6VC023Py8e9OWUHA4PGQO9MCUyDZwPrmkXA6npTJJAvBzyeeKSSTnoQMZpBsSCY7iORjp/9ekBHU7sd6j82LjJO72FNjlZWIyWBPWmSThQqnHTstHDR7WbGejf/AF6Z5gYDsR3p247evP6Uxht8tgOf97NPLdOx/nUbSbu/GKXccDIyM8n/AApCHt8+056fhTd27dgcdKU4429vSmlm5IxvAoJHjGwEcA+lJ5g3YIYN/dz29qiDfLyfw7U7dj3H0/lRcofuHHXnrS7iWwPypv3V5yfwzSE84JwAPzoAGbr149O9Ir+Zg9MUMVUAZycdKE+aMEcAUbADR7WyB70pcqD370NM7SEYJB7+lM8w+5Y+1UIlWT8sf5FKCOOp+lQBvqM+1SK2MD39KAFZMnPfrinM44AG0fWkDblxuNIWDsQvDAUCHSSnIIXjvzTQV7ceuKFYoM9PbFKrBjyOM9aBDVVPNyy5bH40Ky7tmf8AGlI2tkjccUZA5QMMnnI/SkMUgdMg8dacWz25xzimDjjbuP8AdoZjtxjHHegBwzwFBNNzuJG3B70iyvwvP1xT/MDdeG6HnrTEKnyqcjvS7+2OfWmq25eOMUbiMj/9VAEmOCQcYoVufm59vSoTJtVuDyeuKeWbjOM9jQAhA44OPQUKQvIG3HAXrTlyA2OfXNNVSwB4HsO1AmKrbW9B6U9gJE+7kGmMflwWO325NDN5a8H6cUDDaaKTzx/dooCxjM24ZHJpGyVHUjtgVGcqu4HjOdtKQWjwGINZHQRs43gfxdOBTl4+UkEr1U1FyM4GWqRDu5fg9/XrQCJG6ZA4pU54PI9RSMSWBHJ6e1IuY+hyD19qBkjbep9etNDjcFxz6UrOCoPB470u0ZHOSKQwb5tw3dRxxzSKobP8OOBQw5xjH0NMTK9++MGmSWLRAsmed/P8jXC/BgZ8F3UvRpdUvGJPr5pzXdWrbWJx2PT6VwvwVjK/DuJmfcz3t0T6/wCtYVPU1j8LO1jyXwB9BnrSBuCSfmB4p20lDghTnIIpqkrwfmJ74pmQfebkAe5pvJb/AApxVipJH4Uit3I4xzimArMq8N1z1p5U9AM5pdg53En0p9vhpBgc8mgLXOb8QeOING1SPSbSwuNd1Hb5kltZ7cxr2LEnAz6VoaP4gsteklgiLW+oxRiSawnG2aNT0JHce4rB+GMKtYavqUhDX11qM6zOR8w2OVC/kBWn4u8NJrlsmoW0v9n67poM1nfpwQRyY3/vI3Qg+tO4bG3GnzEFTnoDSiEttIAIbptPH/665fwV4ov9e8Q6tHe7VRbW3uIbbAG0Op3EeoyDWSml3+n+JvFnhXS9Sks7TULEajaStlzYzs2HUf7LYzjtR1FY6nVvFGj6DIlrc3qtdsfktoQZJW9sDmsRfHOs65rV1pvhvRY5FsQPtcupuYwHIyEGM4OOareAdJh8I+MtT0B7eGUrYW95HdsN0zscrISxyTkil0fVIvDnxa8XaZcs3kahax6zA4zlgq7JQB3IwOPen5FaHTeHPEA8RafJJJZvp99byGC6tJCGMUg6jI6jHIPoa0srF8xIjQHJZjgfWuE0/wAQT6P4f8UeMBaM8dwwnhtHO0mNcKGPHBIBNdheWNt4r0GaxlytpqVtsJQ/Mu9eo+mf0pdRWLjvHDDLNJIsUMY3tKSAgHrmuesvGS67Ns0Kwl1SMMVa8bMcA9cN3/CuZ+H+mr4y+G0Wh608rSaPetY3JRsecYWwu7PUEbc1r+G2Gg/ErxHoiy+VZ3MEF7ZwZwq8FXCj04FAF7w545tvFOs3thZwPMtiSk95Ew8sSDqoB5P1rovusNoOCcdK5rVvC+m69ql6dKaPR/E1iizC9gAXO4ZG8D7ynHOav+F9ebxL4ftr+RVjnbKTIvI3q20ke2QaQzWa4ijmWF5USZuFjJG48elO42kY/OsHxE2l+H7iHX7qwM0yMsD3SZ3RoTjOPQd63GYTKCrqyMMhumQe9BQKQuCeTS7v3hOOfcVVsxcqrRybSkfRs53D/GrB+9lTj2A4oEx+RypHB/SkDfMMdaZtHrlfelI2tlDx/nimAM3zbTn5uh/pTyvzA4Kn8aXedpBAOefxob5R6mi4gbsc4IoVQq425Tvu70iKF9CaUA4JzgdqQD1YYxx6imbvmyQx9AtKQSOo4py9Dg5NAC7g7d8ChfvfKODScZAH3genpQzdO1Ag9T1P/wBekk5B659ulKHO39PajueM00ARsVxwd2KerKrYK55z15qNSpbOcDoOOlK0rcDG7tuAouLUfvyoyOD+lKDjaRwOopvJ+vakYHcGHBHai4XHHPJC8n0NPCjaCCF4xSbjjrznH0pXUbeenrQiiJlwp3YJPPTpQh5HH0NPDD+9n29qFQKMg7j+tMQvQDPWnKzFQCOB6Uwt5g47delK+WGM8dqAGtgOBnGffNPYnpwcdxTd2CMj/GlbIXrQDBfv8foKUMGyOMZ/KkV/l3jBAHeotu3LDgjnimSP4UDDFjnA+lP3BsKeD1NRrkqD+lSbcAE9fapGhScD3prSbgPSkfLKcDIxx70zzAvytwQKYyZVJAB44prMd2D83bjikE3AGMn0py/Lkg5X37GlckRsrnAJBHIzRyFHDYz2FG4juT6GnKxKjt3pgCMNx7GjcCw54PWg/e3A9eoprIHyevGKSGhzZ3dcdsGk5+Ygcg9qduVWXIJ9WxTW3dmH40xDuMDnn2H44oY9SxLHHftTNyqCGbbnp6GnBi33mzU3AEVVUj72eevNL1Xng0L90E8A+1Ju9fy60AI33SDycfgaYG2lRgZ/u1IewB/SkDFcgjn+tNALyRn096Bng557UjHaBjijBCnncaEAo4bJB9fxpQucHnHXNNDA9Gyp7e9IrY6jj/PNMB2du88sAecduKVmVsdh1H/16b2zjG7uD/Ok46c/yoEG4qwOc+tJwV4Ge/60u0iQEDI/vDmgjnrj0osMYijd+FP4ZuOoo2hmKE/PjIGOMetMIJbIOR0K4/WmA/aV4A5pyr83Tn+L5qZC+wtvfHbmpFPp+HvSuSOMe7Gevb1oZRwMfN9aD2z1pGBPOcjuDQMZyGyV3DPSn+YuCcHbSbnVcfw+1J5YbBzinYB6yKyg4+meopYyHBx0qNVA5B49KarbXO0/KP4cUxE3H3sZOKcpDIO+ajU4UgsceueaRJAqZBJI65HWpBEzY2kdqQsdvXntRxwy/Nnn6UjMjLzwe9Ag6N6HpzS5545AqKRRIoDHHOQ1P8zLEggHP0oAGQsfUUp+XHHTvUfmERluARxz3p/bII/3c0APRtrEknGORTXYjHGRmmmT5iD1pxkJXrj3FGwB93HGQ36Uq84BbaaTcdoGeKacHnFDAkyDnP8APOKa3OTjp1/+tR95jn7uPxoDHcTn65pgCgZyc57Uow3IGDSLJ2z+FP3Dbnj+tMBOJMgDaV5GO9IuFxlfbHekbp6f0pHbe2eh6ZApgO3fNzyDS9x8o60z5tp5yc0vmbeeRxyKTEOK+Y44PPUU4tt4K5wcnBqtJubo5HcVJu3fX1pWYh6yFc8cdqYz84YHkU7AMf8Adb1pjMgU8nHoaooeqk8qf8aUtkngA9Tio1X3z2GOKVW+UAnOOnekxD1xnBBp27kjsfXmmbt2MHBz6U1ZPmwfXmgkk3BX6Z9D1pVbhiAN3vTd2RnNKQNvXB7egoGKzsrAbe3WgN3H5kUwzBvp3ApN5V1AHB70wuSbt2Rj8e1HLY/likQDHoe9LuYsSxD/AEGKBCeUP8mim8en6UUCMZQNzUMAqjdk01c9Rwx9aF71gdSFkYbgQcH9KTO7PHSl6/TH0peB1H5Uyhikq2ABz0PpTiSFI7Z60gT5R85znrQw2sTng9qZI5eVOTgilVjngd+lNX7pI/8A10vtmgfQcON3U88c0i/Muc5PX0xTD2B5NCMGzgHHSgknjG1ZCWwNjHP4GuI+DKNF8ObIYwWuLhsnv+9bmuzkby9Pu2ODtgf/ANBNcX8Gw8Xwv0ckbw5lc/jI2P0NT1NF8J2SgsMZyehpduAMVGrH5vlx3FG7/OaozJAcYyQR60btoGen+eKYvByBStIVGdm8Afd9aAJVO5hgYA/WkjfysE8H+ZpkcgkX5R8vYGhmPGVPPGRQM5uTT9V8L6ve32h2i6tpOot5tzpe8RyxTdDJEx45A5BqR77WfEwFqdKm0OzY4me6ZWkK91G0ng+tamta0+g6ek6addagN2GjswGcD1weornn+LGnxsEGheIGf+7/AGe+PzoEaWveE2vprK/0a+Oj6zYx+VDcBN0ckX/PORf4l/lTvCvhWbQ7y+1HUb4alrd//r50XCKo6Kg7AVSXx9qF0A1p4L1aUdjNsjH6nNP/AOEm8WSANb+CiP8AZuL9EH9aZWpoal4da+8TaZrtvdG1uLaNreaN0yJojzt9iDzWD448O6g/jLwj4n0q3+0yafJJaX0Kn5jbygDP0UjP41cXXfGzKD/widigb11L+gWpP7Y8aruz4W09RjAA1Pn/ANApk+Z011Z2+oWs9lcp5lnPGYyMcbSMVw1hdeL/AATAukQ6J/wkdvB8llqEc6xlU/hEinrgdx6VqR6v4zCnPhSx9v8AiZf/AGFOXXvF6cnwhbsg5+TU13fgCtTsMseCfD83h/Q3hu3WW/upnu7orwPNc5IHtV+98P2GpaxY6tNGft1mrRxODjg9QfWshfE3iNlDN4NmHcbb2M/nzTG8Xa4h/eeDL0EH70dxGf60tQRZ8TeAdI8XX0d5di6trpU8ozWk7RGWPOdj46jNbFrZW2m2MNpawra20KhY0UYAArnm8c3saBpvB+tIOnyCNs/+PZprfERODJ4W8Qxknotnv/kadhnUSMJIjG6qUYYKNyGFDNwNo2qBtC46Y/pXIt8UbGMHzPDviRR2P9lucfjVjS/iZpGsapDp8dnqttcS8K17ZPEn4kijlBHUctjj64GBSDoCR9KRmKtjI9uaaGJXGMcUDH7gcr0/DrQeH+nUetNDZXd2zkbeab5jHIP4e1AD9u7ryp6e1Cg7iN2VB4pkbsy/MAp9BS7zyM4B7UCJeFySNuDg5oyT0/IUwsMcDj3oWQ7QDx9BQIkX7v8A9ekHHQgD1puSOCPqaeremPcGgoPMPBA3HvnvSGTK5Awc4I/r/n0oLBGG0gA0Izjj5ee5oIHcsSCvy9eO1KSG6NTdxzsLAt27ZpN20nPWqAli4GDzx2FKG4II49DTBk/MOV65HalLlR97Pv61IDtpzyc+lKMqo53fWmrhck9aC/JORmgBWzuIBz3xSMoOCQT3Ipzdc5yM4BxTWY7OCMknmqANyDdtOeOOORTlb5eRUYyy/Ngnsy05d/YjA7d6QxR2AGRTpNqkHdtB6qc0w9MDnvml8tWOf4hwMihCHK3TcNw6UjKW6HZx25pQrNjbjjrg05WHOPTj2pgIPvHI49umaAxXgAY5BBqNuSQXzznpTXVhlsgcdTQIm+bgKAOetNVSvXj6DikiYk8H5Se/epNx6dhyaXUBfm2nGPSo2UNtz0zQeCCTgGo2k+YZOT296AuT4C8flTT8q5A+mOKQ/Jtw2M9qTqvBx6gUtxMcJQcDGCB+dCx/L8w+U88UiqASMhsikwcgA47VQ0O+XbweOwp+RxyB61C2/qCKQZ4BJz3pCJ3YfLt+YYxSDOT3qNd2COD6EGlUHzMggUXAk2qeCfem/MG68d6QEru9TQSVGe1IQ7afL3duwpMjA+vNN3blG1gM84xSbX9QT9MZpjHr03DAb17GkL/MAPyxTlYbXDcL3WmfK7Ll8EHIYf1pjY85aQdAnQUrK3mDAAHtTNxHVsjNKzMqjnn+760CDLJISAB345o8xTkDj0prKeWzwO3QihV3g/NjvQBKACxAGcclTSeZgkYHsxqHczSH94FK9+v4U7ksuGwe4xSQD2zGpAKtx2OQaiaNlxgYQ89f0p4jLZG72yKUx8D5u+OKoBytt4Jyvv1pDlc459xTipRRlsntmk+7gHr71IAyeZEMgHnOMc5pFyAR+lKuN2cc55U9qTJ3YHfmmA7ecDIyelNkcqVCoX5wcHtStnOCdpxTdxxwcUCH7+flGOOKF6ccetQ5Eak9AacnRiXJ9OKq4x/14NDN2boP4hTPlbmQ4XOM0nmF1ZQ/INQIXlZMY2/XvUgCYJOevSmkZU7TnHv1pI1PrnPNFxEiyD7wyRSknrj8qikZdvZaTeFbj8aYE+/BxkZ9Kjzu6jv37UfLt4IB+lIyjd88jBcdaYAW/EdMYpy7l6Dr3NN2jkbhjrS5K8DGKegh7L0BX6VHllUjhs+1L8zAA4pjRsIyM4A9KYEsf3eFBzSspVhx74NQws+zDYX1461JtKgMrZBHPFIB4+ZemKaOCQOG7il+6OG3H0NI2T059880roACluc4QCnCRljOVFQtuU5D7QOo7Gl56g89sVQEzZ29ef0qMncpyce1JvOWVv0NAGV253+5oAAGG4+v+HanfwnPX680m5mbrwOPrRtUc7sNnPNADZFLSpkcd/epd21sDp/KmOxXHPT2pFZjknkZwKCSTcVxkZ9u9M3b9y5ww6EduelMKSSDJbHpxSj93I3cgUCJF+U8jPH4U7krkDDY5xTIz6nIzT+q9yKAEOejcjFIo+bPp2o4Xqef50n3WxjJ6g4oGPY4x8gFLkLx3/u9RTNjbR3HcU9k9B0/SgBEx060R7vu9ec8dqa3PXIHc05Qx6HI9aBaEpYtnJO7H3qZzIAMc+1N7kAbqVunByaAHeU9FQ7j6fp/9eigVzKYFgT1wOc0A4yeoPIo3beTgf7NKxCjKjAzgisbnUJ/FwoB96btO0857UrfLxn8aTj7p57ChFC529TtFJkDOOv603cVUZHzUoIC5ByaAHdsgfNSbiV6c0gk3YbGAeKVh8xHocDimAM23G3p6ClVjtO3gHnHpTc4IOCM/lS8LgLxjt/9egnYjvGZdMvsjj7PJz/wE1znwk+X4Z6Aen7jJ9Dk5rf1mRV8PaqW+8tpK2P+AmsD4Wt5fwv8NgjObRc49TUo1+wdMrFsso5IxiljXbwDk0m0KMDjFBZlbAHPqD2qjEkZuTtHHrTeVxz8v8jTdp64wehpRkjjvQMXb8xPfrTskKTgH8KRV+XBx1zwaa/3hkZA6YFAEscn9z5SDk8+1S/aJCANxxVVmdCCo49M09W3HOMfWkUTNdOrctkdKb5rSHPKtyD6GmhdvJP1FR7mXIIz644oAm3Htk44x603cWzjPpSbuwPHrTABuByc+mKESSq7cZJKjpTTMNwU8Ec803a3UE5PUUxlLL97kcE96AJTIzOvzfL6U7zy2Ru3DuB2qurNGo3LkE8dzUmQ2cjk0CJVumVgMsO4NOF0w5LEH61Ud22rtA993apV+YYPI9KYFr7S+3O8q3QqDRLcPJFtLZGMVUWRNxXJGDgA07zNuRuJ9aCkOjXbwefekbC7RjBxjJOaj84rKF5BHJ7ihX3OQQc0BckVv4ccd8U1trNjo2KYu7zC2fkxT+4zjdn86AE/hORuUdzTlBDcd/ypTt4ONtNOPcigB+4A5I+anZ24UdCMnNQrhTg9M1IrDaQowQOBRYByt1BzgdKRW+YqB0pFkAGSBn2pv3mIJ5PvQMmbKsAeT/Kk7Yxjviot3TjcuOueaft+bPUkZBzTuSOZfTpSSYZR1NNZjuHPX16VIw3L0w3pRcYscgHbn36GjeCNwHOeKRdrDDDb9KNuTz0Pf3pgx4+62BnB6UZH8XHHBpCM7DQvJ2k8kUrkkitu479zTTleevPftSBsADPH5UMNvup9KEArPtz6Zz2oVRuU98dahbrg8c8E05Pv59uAe1AXJMEfL8oA9e9Lkt1OePX+VNBHQNQ37vgfzoYD9wHqATRt/H0pm4BgTzn17mnlQzZH/fNCEOYMG6/N04pCwGQwBHQg9DSeYd2B6dTTJG8zqPm65XpTDoPTHJH4Y6Clmyy9Tx3xUWdnfGetSyN024PY0AgbbwMc+3emKqDB6HPHrSx5YHrRICFypyPpzQIaUkLDkcDp609cNyeDTF3L1+8aAArYxzjpmlcbJGO3+mOKaCG29xnGaSRhtGSwHr6U3jbu3lex560wH8rkDkZwKdux9fQ1GrFhnd82emKernnK5xUthYVQO3Ge3ajg5Hb6Ux24AHHPFKuGA5xQNDvMywXB+tGA7beemRzSbRu3cqf0pGHy8evNAhV9eoHb0pfvYOR9KRW3ICw+bp0pdwTGeC3tQArDr7+nSl4PAwCP1pilVHp2xRn5vvZ5/KgRJuK8DaTnqaMdQPXimNlvlzg9vekXK87jnvQMkJ4AyMd6YuznI+alXhcHpjmkT5DjqMfXFMQvHIwB+tHykDcMY6FTzTAvzHd0H8QFO2jO8HGe3rTAVX2yYPIPGKXBPJH+FR4G8YOAOtPAOctgjtQIcuGXjJ/CkaTpuHHrTV2q3JA5pff8ge9AxVcMnIAI9KRCGzzz6dqFO5c9s0o4Oeq9h3FABllUDHH5UjDcRnjae1K8XnYA+Yk9jXNeLPiV4Z8JzC31HUvOvjwLOxQ3Ex/4CucfjSEdCobk5yW6Y7Uu5owSBmuNt/iZqerKsukeA9bvY+SJLpo7UH6Bjn9K6nw/f6hqtiZtT0j+xbgMR9mNwsxx65Apgy5/rvu/e78U1R5bAY3DrmpsfNkEBj0OKSTesMphRZJlQskZPDEA8fjU21ENWQ7eeOwIpp5HOM9cVleFfEEXizwzYavFF5Quo9zxE52MDhhnvgg1p7VVi24nPrVDY7zMdR8v8WaRdrfKRtU989KONhAOTSRou4FwVHXaaCSTyyN2OPccUGPqj/m3SuK8QyfEeLxM6aAugz6I6B4zfK4dG7qSvvz0pw8QfEDSo2bVfCul6rbKNznSb5hKo74V1GTTHa510ZfuAVzj5frS+WWYsOQeKr6XqdprWl22oWUhktbhBJGxHPPY+hB4I9qnDdCQcigCTacDgLSLu5JAB/Q04cjOfwPamt8rFulAhWbbjoRR5m0Z5I74FI2Qex+tC7Npxnd60AO2s3O4MvbjkUbmViGG3PvmkCjnj6j1pT83Xk+uelPQBVYNlccUu3lSAMU05wOSfamliPbmgAZmXj7p6g0isys24YOOKcPmw3U470u4bsE5z1ouAq7/AC1GQfwwfWlLAr8y49/SlDBeueKY6rIeTgenZqLgDbd2A4DD1PWnKpVvvdO/amNiMA4346imq6ud23IPOCKLiJmYr1HPpS7xLgA5H94duaarcZIY/UUm0LkKMD0oAchVflyAe1KrfMAOo55pnDAcNx0zT1YD/Gkg0H7Sx4wPx6UjAYx3I65pGbsMH3NNaTJAIoQXHK2FA6Y/OnqzHd2yORio1kVW69aCwOfT+VMkex2jAPFNGck/d7c03+6d2fT3pFk5OR360wJt3YjP0o++MfpSLJuJ+nQUcdzjv0pMA/4Gv5UU3YPaipFYx1+YCkbhSAcUm4FiOgNG7rWZ1oXO7aeMjkf/AF6YxL5Ix70oJU9cr3pWbrt57dKYxoYldoB65pzf3unvmkODnBxzmkVcA/7Xp2pgKOhFL16jn8qbuAyc/ULStIQw4GccetIBQCc5PQUi7mQnFOOZMjj69KNv50wKPiKTyvCurkHgWkvv/Cazvhwhj+HXh9SCGFouMjirfi5lXwbrmRj/AEOQ4/A1H4HyPA+ggcYs4+Pwqepf2TXUhevDU9QAvAAOe1NVCoIJz3p3IXrmi5iIe46U0L1/Sl5c+9NJ5A7GmMeuf8ijgLhR9c9qaUz8o4PTikVNmfmJ7ZamBLu9Rkd6Cw2kk4H1pgbaoGfm/Q01u+epPT1oGOkmwxzyuOKJGZiOMZHGBURZdoC8nOOnSkmeGxRWubiOAE4G9wM5PagCUfJkk5B6ilaXaxyvFN8vy+Ce3DZzWdqWu2Gj32mWl48kD37tFBI4/db+yluxPbNShF9pQzeuOPpS7WG3J688HrUPkLE7AE7icnNSR53DB3CqKJAxUDOBTcsrALhl6GopfmcsWO3+6Bz0pyL+79Fz260iSdgSwGM0hY5wRkfrTGclgO/r60qg/N3HTntQArZ4zgjOeKczFM4wRjpSLGdpwCDnpTGUYYkkY6c8UDHbt/BPWlRT5ZBpm0rgFg27pjmnr8oOMjNMmwcKQQfpmmxsysSDnPqKcwHJJYp06UkcbRyEhhsoGiVn68Z5phX5gGIDZ4YjNIxB4BGT3FG4tkDBoKHbemRuYHrS8eu0nrTVUSYwcnpU6WrshyCFHf8A+vQIh8wDBXA/pUnHJGCP71Vo7yxkuWtkv7WS6HPkLMpcfgDUrfxLjt1oGSMpV8gj/PNOU+W23p7VHHGGwCwCgZrkofilY3l3etZaPq2paNaSeRLrFrCHiVx97C53MoP8Sg0COvd+GyKVWKxjLA+9YU3izT1vLGKRJFs9R+W11NWDW8kn/PMkfcb64zW8q7cgj5xwaBibk7sQcUnKnIJdTyF9KPlyS2fwpzfLyMUAOUbsFegpWPQnOMc89KFU5JBAHpTWbc+B+vemSDD8x+tOVm/iIX0pnCsew68U7iMZ6g0wDavXgjuBRtOzhst9KyvF3izTPAuk/wBo6iJH3ny4La3TdLPIeiIvc1l6V43upmh/tzwxf6BDcELHdO6Sxgnpv2nKZ9xikSdWrbvvEBh0FL5nZcN+GRVCx1LTdSvLu0sr+G5urVts1uH/AHkZ9SvXHv0q7CnljkcflSKFY7j/ALI7DHFO8zuSMdA2P50xtuRjgg5p4w3Pf+dNCFHoThfWk2iMjHQ9hx+NG0IpIXI64po2uu8Y44+lAErKNvPP+FMXhjyOhwKayFFBxntTgQWxnHsaV2SO5Y5Awc0CMg++cHFUtZ1iz8N6Le6rqMgis7OPe7D7x9FX1JNcXobeP/FkMWsTaxaeFrC4+e1002QuZPL7GQkjBI7DpVDPQOcgD09aOeufwzXN6V4mvINfj0HxBb28WoTRmSyvrMkQXar94AHlXHdc/St1WHK4INSBOPmBHH4d6btZl6ZXuO4pOFUEgkfrVDWNOvdSMB07X7jRGQYbyII5Q/13jtTGzSCtuK9T0pG/u9PftWA3hnXsceOtRLjoGsLcrn3AXmoLzUvEfhWB7rVEste0uIfv7i0QwXEa/wB4xkkNjqcEUmB0y5DdQCB3FNHK9M/WmLJHKkc0R3wyKGR17qRkGn7QOcYpAP3DbgZX2zSbvlzn5hTAhkyME+wrkPEXxU0jRtVl0jTba88S6/GPmsdMTcIz/wBNJD8qfjzTEzsUYltwOBno1Q3Oo2tnPawXFwkM125jgjZuZGAyQPwFYPhG88U3zXVx4k0mx0iBsfZbW3n86RPXew49OnvVL4g+A7nxleeGr2yv/sF7od8Lxdy5SUYwyH0yKdhHYMpVtzcH604FsqSQPp0NJIxZjjr+fak2llGRnHcetADuvzAdTg80/jbjoT6VGrHsM981BqmqWOi2LXmp3sGn2qHmWdwoJ9B6mkBYDH1APrSrJ94gY7kGuLX4veHrjKabY65rOODJYaa7J+ZAzWv4b8ZaT4qnmt7V7i2voV3SWN9C0M6r/e2nqKANvl8t1Q8YzinHPAzhQeKa6ruI7UYO4KeD/OmLoSg7sneFXoc9KGJ6Hr2x0NMEe0H5dyt1HQ0qsu37rZx1PX8qAEx3IyfWmsrdA2B2py7VBOSTSqM4wDubgUAPVtuONy/rSZPflSeD601SG4Iz7inLCF7E5PrnFMDkPi1NfQ+G9OsLC8lsJNX1SCwe4hOHjjcndg9iQK1vDPgXQvBMYg0rToY3UYku5BvmkPdmc8k1m/FQmHwzpl7tytjrFlcH2AkCn/0KuvvEUzvg4P8AOgBzSng78j3NMZ2Zsk5PTio1UeXhsjtigMvHBK9OanqMfuZc84JqS1k23CueeQOvvUOAwGeTj1pA3ly84IOCDQJnGfCjNjpfiTSQVUaXrl1bqv8AdRm8xf0YV2O47QM8j2rM0rw3a6Lreu6jbSSebrEiTzQyY2B1XbuX6jFaTQh1wV6HPvVAPXHJ4B+tJIxYE5BUetNaPbkeZkdu2KbHIOj5P40xEvmOygg/r1p8EzJMrA4JNQMqbjtqWHZ5sbY78g1Qjk/hmrR6Nq1qoCx22r3caIey+aSMe3NdSG3LjuO+K5X4fzLJ/wAJQucNHrM65z06H+VdWo6BupqWwI23rtUnGTxU2W24OGPbis+zt2tdYmSWdZFuBvji/iXHWr20jcPTpSAeyndjHHHFLgYx0PtUbZLKccYpygt1PP1pDF53DBIp27cMZyfSmrGOgX880it05/OmIBndkY9DmhmCnbk/7tIcK3Tn2+tNljV5M9ux9fWmgH9FX5wR60eZn0/AUzIAwvGOq0ZCKD/CaAJVY7cH7po4VeMY7jPSkz6DtSAq3UYOO/f0pAOL4answYDOFJqKRdjZK9fQ01vn7dKYEyqBnDD6UM/H3htpmAM55B6ZoHpjA/ShgOUk9Rg/lTE3mQhiB6Ec0PH5gAB/LrSBiDtx070EkuOgPSl+7xnOaijbB+4cdmp+QrHoT65pDQ7Yu0g9KJNy5Hb3pvYDH50udx9R3xT5gsI2FUcDA6AUBhtHzYPpTeQzcfLjPWhQMcKRn370wJflBGGz/OncN9ag2/Mc53dvSncR9s0hC/8AAqKPMX0/nRSsBjMxIPYUg7+tDH5eeajVdzH1/WpOm4/d26+lO280wruOSeM0u4An1qGMcG+VjnBXtmmlj0BzxSNtGBuwcUvGQeh7ijUBVYdxx2z0pcd8cg8GkBIx3HTFO+VckcigBRIxfI4PoBQ79yMBu3pUXmKvHOTzQrduvpxTuBm+OnUeBdeYkYFo4J+oqTwbH5PgvRIyBxaRYx3yAaofEqX7N8N/E0mOfsMhGPXFa3hlf+KW0celnF/6AKlbl/YL24df596Td1OML7Uh4ZgPXH6Uu0Y5PNXYzHK5UHnJNI2eTTdwU46UHkgjr2pIQ2THHO0+tL/CSenvTdw3dPzp3mcEdsVQ7ju5BO7jgUKo3AcEemcEU3t0xT45B5ijoxNAM5O91zW9dubi08Om3tYIJGhm1KZd5DA/MFXvUlj4Fsre6ivdSuZtX1FPmWe5bhT/ALK9BVbwHvstR8X6bzm31Fp1B/uyAH+ea6pozuDckDjpQ2IkZTtzg/7tUfEXh+08XaLcaVd4WOYZjcfejccq49CDiriyduuTTgxXvtPsKmInucl4I8Rz3v2zQtbYL4i0kBJ+MG5i/gmHqD39DVHxdNcL8S/AMFvI6CRbqSVVPDIFHUd+cVp+ONAu9Qa08RaFGreI9JBMcbcC7h/ihb2Pb0NclbeONM8YfES01/T1llt9F0OaW5sypEsEzOA0ZB/iG0/pVK4z1V06t3qDcQvHNeYeG/HmuXWl2vjie9WbwpfzmJ9PkjAa0g3bVlDA9QRkjpityX4pPefadR0fSm1DwzYShLvUi4UkE4LRL/GqnqaNRnarJtbnpnAFZniHX7/Q1torDRbjWri4JClCFij/AN81otIk2yRHVkkAdW7MDyD+VWRMyr97lexpgjm1fx1PiQnw/p2MERsskv4Egil03xXdrro0DXrKHT9Tmj822ntnLQXS99pPII9DXQYXOSf/AK1cl8UpF0/T9F1lcGTT9Ri+c9drna34c0gOtOY1IXt+tLwwKk498UTBWbK9M8EUxmKjOMg80hj2UN22n+9SBiMg9jSecJMfw8c5p6t3wT6UxCNySV59jQkbdGOQehxQu3+JijN35qS3/wBYu4ZAPr1pDOV8VeKdSttctPDvh63hn1y5Tz5Li5/1NrD03sB1JPQVWn+H2pa63meKPFl5qMY+9Z6eBa2/0wvJ/E07wyqS/FLxrMTmaKO3gXPO1NpOPpzXWc7STyPpgfSmMztH8M6J4djH9maVa2o/56KgL/ix5rUMgbAHPHXtTdq84zu9CP609MLuPPvQIh1aOWbQ9Rjt2xPJayKmB32nGKy/h68Nr4H0MWSLFB9nXcicYfHz5985rcjYpIMDp2rmmhvPB9xO1lYyapoc8jSm3tiPPtpD94qpI3KTzjqM0ITv0NbUvDFjq2k6npwiWCO+BdxGMBZQMq4HZgQOfaq3gvV5de8H6VfXBzcNFskb+8ykqT+OM1lX3iPW/ElvJp/h/RLzSjMpSXUtWj8nyV6Eomcs2Onauh0fRLfw7otlptsWMNtHs3H7zHuT9TzTDUuBiVyD34FPZiMcBvaoNu3tnHfNSgZxnnmkMdn/AGsEdqF+bknntTFwGGV4+nFP+9xge4FBIq53jnn+dM3BWZcqGz0/pTWk2sOpDU6Nh16ntQTY5rxfBDJ408E3NwokiWWeNEPQSGMkH68GusuG86NopB5sTjDBgCCD2rA8aabPqWix3FmnmX2mzpewRg8sVPzKPquRWppOoQeINLg1KxcSwTKCdpyVPdSOxHcdqBowfG2kvb6bF4k0xAusaIPMUr1uLf8A5aQt6gjp6ECungvodS0+1vrdl8i5iWZCT2YZrL8XaxD4X8J6vqNwuVWBo44z1kkYFVUDvkkUzwbpsun+CdCsLhf39vZRRyhuxCjrQO5sSfIynrzyaVsbhtJx9aZ/EPQdKcW6j2yaYh3mbVPr+lN3HqeM9QRUJbdg4YjsOmalV9vv60mIdG/mKMkj6ikPf5SSO9NGGY7l2HPHFLuG4LjPuaARyXxYgW48L6X52DaJrFnJdL2MRkxg+2cV2dxuMuONgOAvt2rO1nRYfEeh3+lXDkR3UZj3Z+4ezfga53RPHllp6RaR4luo9E121AjcXjbIrgDpJG5+UgjBI7HinqDNbxx4dfxP4beG0bydWsXF5p86nlJk5A+jDII96seH9dXxL4b0zWEQRvdQLJIuPuv/ABD8Dmuf8RfE3SrOJ7Dw3cR+I/Edwpjt7WxPmKhPG93HCqM1seDfDw8I+EtM0p282aCLErZ4LnJYj8SaWvUDWVjuHByRnPpUijAycYz0pGI546jPH9aRSzbeMUhkrNtHb+VVtQTzNH1LccBrWUHH+41Sbexznr8tR30ipoeqO4wBaTZ4/wBg0CML4cTS3Hw68KyP80j6fCSfX5QK6Pcqk4Xn3rmvhllvhd4QYrz/AGZDk/8AAa6JmLfNx6DBpgVfEGqR6D4Z1fVXODa2ckozxyFOP1xWP8M/D8PhbwRpsSQiO9uYhc3khHzSTONxLHv1NVfjE0sfwp15EGJJkjg6/wB91GP1rsNoWOFcbSqKu36AUCGRtI/DYGfvAcVX1DUrTQbE31/cLb2wkWPzGBI3MQF/U1YGBx3BzuzWR460CTxR4K1bS4gPtMsQkgz3kQh1H5incdjXmV4ZCG5PUHOKUZZd33exBrDt/GmlyeC08Q3U6W8QjxJC33xMPlMeOu7dxiqWqateWfijwVK+6Cz1OOa0ubZjwJCgdD9RtI/Gi1xHVrIGzwOO1UdQ0fTdea2/tGzhu2s5PNi85ciNj3xV2TAZtobr1xzTQMEtt5P4H8aEBZW8kiRUjcRov3QgwB+Vcf8AE6P7NpVt4mjH/Ey0WVJDOg5khJCyIfUYOeemK6fPzcdD2NZfi61/tDwX4ht1UszWMoA6/wAJpiNfzUba8ZHlyLkYHUHkUYZuf51m+GNQTVPCWhXq8rNZRPz15QVpj7vtUjF8w8DIx6ZpWcqxOQfSoyobkD1pV2svTHtQA+NemDxnJpVwzHLe/TmkDBUwKPvEHGDQIdj5fak2nzN25s459DSD7pyG68UikhWzk8dDTGZHj2yN/wCAdft1XdIbV5Fx/eUbhj8RVvRdWXXNB0y/TgXNtHIPbKjP61oRoJkaJ+Y5VZD+IxzXJfC2T/ihbWB+TZXE9nnr9yRgP0oA6lmLY9c9RSKwOQRtP6UbmVsjGc0n8JI9c+9O2gDhktwc/SjbubJ6A9KVs4BGOtR+Z8+QD0HNAiWRi3Bb86P4j/eH4Zpsi8Hvnrz0puQoXC8DnrUjEkYD15HSmLvZVI7dcGiZfMU9AzdCO1IsbqqlTnHB/wDr1ZLJsrwwJ/pTosNMiq+TnOe1Rq/Yrz3GKlhbZIDjPPINUBxvw/Xyb7xnkDB1yUlf+2af411nIwcgqf0rlfA/7nXPHMeRldZL8c/eiSuoU9gAeM896zYjO1bS5f7YttUtpNzwrteM9Cnt71reejIWJwzdM9aj3nyyRz9aVSBjAzgdqZSJI8OvDFueuKWRlRc9u9M42nnpUW77wK4z60JCJ1fcCVfcucHHYUeWwbG/hv4sVCu1VYAY9MVJGxKgdR9KLCHMSvGcil3d+o9qbv8AQf0pnVuQRj3oAf5itg9QeM45pyOx7j3z/OkUHHA59COKiVSmPlwM4wKALAHt9aRVO0jGTTFZeQw+boWHPFOXJJKnI6U3oAsmcDByetJ935t2D396Vyeo696cx6EDIPSi4APuls4Y9+1MUgqeTt9+9KxPbnsKSVd2zgD8eaLCF8wFV54+vSjhO+c9/wClN8s7c4HpT/4GVuvbFDGCyDOMYJBGDTWYFh7e9OxjgDPemyY9j6ipTFYduEvJfp+Yp24855P8vrULYyMAA+hHWnbi24gHHTmiwEqMu7r29KFI3EBwe5po+7kkEfXmiPJXcMdcc9aroA7cMYH4etIACBzzn7wPWkZjt7Yz1poY+nHTFBIuB/eb9aKXzE/54mikBjBiRjPQ0fxA5qGOTn61PkclSDg9PWpOkRmO4huD2pFY7gfzpGjO3dxgdeeleT/FT9o3wz8M82kk327UscW8PzNn0OOlHLzDTPWmXceSAewNM5yMnpXxPrf7aHi6+mP9naTZafHngXDM5x+GP61Do/7ZXjnT7gvqOn6XqMHeNS8T/g3I/Sn7KQcyPt8Nu6jHNSKAvfINeK/Cf9p3w18TdUTSJEk0TWZBmK1vSoWY9xG4OGPt1OK9oHJPOPXjFZtNbladBzjbljx7f1pVUNjafpzzTWbco4yevrUarub5jgg9uKaQjnvixIYvhd4jOMH7KQfYGtzRvk0HSYxwEtox/wCOiub+LzA/C3xEDkZt8frXSWLFdLsVPaBB17BRQty/sotZ2tn9c5zS+ZjsSx+9mmK20c9aWTk9dwx27VRmLuG0knOOPpUfmlf9qhWJUg4Poab80fQA+1BIqu+4ZPA6f4U9WKjdgk+nalX5gcjmhWKLjDBTQAjthjgZyKBIVxgZHUe1JmlVFLf7X14pgcra+ZY/F6/jyPI1HSklYf7aNtz+RrrI17dCDXJaorxfF3QnUECfTJkI9cMprrc/M3b2BqXqWMZisuQmV69RxUhbcvB4pNu7knANNZThgBtPTNIBY2kifAbAJyD1qvDoumxXl9dxWMMVxeqEuJkUK0oAwM+vBqxu+XjqBmljbcu4MvuM1QGDpvgjSdK8HyeGIkZ9KdJEMchyQr5JA/M1bsPDdnp/hNvDtsNlj9ma2XPZSpGfrWmzFW2nPT8R9aQThCq7T8xxkdqNgMXwZo974e8J6dpeoXEd3cWieT5qA4ZAcL+mK2mU7s4x7U2TKtnGARmlXkDtmgTFVW5OBjt7Vy/xWhNx8N9b+USGFFmHttYGusWQdAPrWR42RJvA3iGNkBU2MpI/4DmkBdsJvtmlWVwuCJYUfd65UGn7mZQSf06VjfD2Q3Hw88MSOcs2nwMW9TsGea22U7uDkdqNChFl2jBXLAgZGKcs3zNkDg4NRxxi3IG3C5571JsDLkLxmkKw/IZcEAjPUUsThSOm361EcZwAV/rT0+VsqMd+nWgDktM/0X4weJIgArXWnW8/J64LL/UV1rMewBOMHp+dcZrhGmfGLQL0/cv7CW0b3ZSGH9a7RlG446jg1QDEV2bI4BH408q8fI5x3oZtu319D2oDeZkhcEDB96QhZJCMEDkcevNCzOrKDwVpgJbp3OORSMu35jTGWWmkkY7zxnFQyMyZJJAzjNJuCtlunuaGkHDbevGMUgHL8uQME9qJJnVTgA8ZKnkUwfN8y/Lx+VNY4ba2MEcGmIVd7YYHHfFTKxU/M2Mjg5zTfm2qMDHbB60kcas4Yj5hwBQIGdl5wNx6HtT4yXU5IB70u0dueOQTRuwpxx79aBEke4EFex7Vzt74HtZtSlvtI1a/8N3szb5m09l8uRvVo2BUn3xW6zlQcDB9e1JuLYwO+ORwaWoHPQ/D+KbU7a/1nW9Q8RXNs/mQJfFFiRuzbFABI966mSR2UZ4bsM/nUW1mwv8AD6Uu7pkAdgaLgLuZto280vzd8fWmrkZG7vwacxHr3yaYMSZWl2ncA6jjvTvnypAVTjmmYLL8p4p/J6kDA/E1TEOwdueCOp9aYpaTOOd1P7YK4P8As/zojUbiRxnrmpGNV3Vw47dOKZdRw6ha+RfW1veRA8JcRLKv5MOKk5wTtzg8/SmKnQjH40EjLCxtNKjZdO0+0sAw/wCXeFY/5Cp38zOWIOeetKyseq5P50x2O4KRn1z2oK6CHO0+/tQpk3HoQvOM8mkkXzF5GKFBZunJ4H09KAHguqkNz6VjeMJja+CPEdw77Uj0+di2OfuGtbB8wgtznI965z4ps0fwr8W7eradKuPrx/Wgk0PBtq2n+DfD9n/q/L0+BRz22DGa1jw3YjOeKis/k0uwUrjFtGMdx8oGKk3YZf0oA5T4uw5+FevOo3mBY7jB9UkVh/KuuaUSRxS9pI1YH6isfx1a/bvA3iS2YbvM06Y7fUhCR/Kl8J3n27wboUzfM0unwMWz1OwUFGmHIx3OOtKsrxsD2XkHNNjTcMAMD65605gGXljj1oEzDm8A+G7jxImvyaVC+oqd+/J2b/75Tpu9+vSrHjDw+/i3RTax3h06+ilWe0vowGaCVTwwB6+mK0m3LjA5NLIzdQB6EYzTEYHhzR/GOjzIms+JrPxDbY5P2HyJQfYq2D+VdDukLHccD0Ipzc8g9KRiwX7oIH8WetACKhXPv0pywtcC4gY/LJGyN+KmhOgJOQfQ1LbqIpVYHA3cgfypp2EcX8I7mSb4baMjf6y2ElqV9DHIy4/QV1qxujN8/OclT2zXIfDdjZz+MNJdRmx1iRk7fLKokB/MmuyVvMPPT27Uuo9B2fl254prRM2DnkUu/wC7jGfrTtzKuDg89MUgIVMiE8ru96mQndjPH8qZvypB5Hrml27sEEA1Qh0jNg55HrikzJnAYAdRxQu5QccDPSmhgw4/WgRNCpEgbcAc/nXEfD/fY6p400xhj7PqpnjU9llQN/PNdosxRkGMgnHH865GzDWfxg1yJuI9Q0qC5GD1ZGKn9CKCjqfmUZIyR2zzSIzuGBBU9qfufcMdelJgKvHX0zSTEP3EcfgaQozcdaFYPknHXIqe3XMwz0Hv9aLgVpsQr+8njgOcjzXC/hyaSRZYyCMNkA5HINebeCfB2m/EaG98WeJbf+12vriVLO1uGPk28KOVG1QepxnJq1bzaj8OdUtlmsTb+ELqb7P/AMfbXAs5GPyMSQCinp1IBI9aYHebzwGYbiO1C9Sy5APDe9TyRhch1Xp2P61CiBUIHQDjmgQ5d3zHdmlhmm3gOqnJ4K+lMX8iRmpIXZenQnpVIRyHhdWg+IHj6NePMltZwnY5iwT+ldVA0rK2UAwcY749a5fTJDB8VPFCBR+80+zmx9S6/wBK6dmeNtxwe/Heo6gPGSBk575FLubpkD6VHIzbd65ABwVANI7O4JViGHNMB0hkGNgwQe4/lTfOaRmUHPPft+FDTfL8wwe2KUEjkDB/SmJknzDGCF78ClHnFsdPRqjV23YNSrJ7b/rSGOwepPI6imMGzwQQRjpTyTsLHnNKoO3kjNAEPmOuMfKaeHeRTyAfbuaViOBj5scUkZZVHdT1oGLHubqOe4FKGO07encZpw5yQfrR91OOvQGgQxpPuBecnqO1J8zKSGwM/Wn7WGTgDn+HpTtxbpjHXmgBuW9QCKVcNyB2peZByNx+lKvy+w9+lMREpdjkvlfTvT+W53fLjNIoKnkA0/ndwPlpAID26HoW9aZIG3nstOZm643c8ZOMUMw256nPalYNRpyuAeBQzEMo6g9TnpT2U7Qeo96YZTGMAA56+pqgHhWbOfTg+1KAwbIPPuKaHZvajzF4Uj9aAHLuYAZBHpR8wz82OOtAO0jnnoaG9Ceo6UhWIvn/AL9FS/hRQLQwFOF5/Wl6sMHB+tNK9e7VJGA0g4z9azR1M8e/aY+Mx+GfhdbKwKvrV/8AuoF9PVvoBXwpIZr26mvrqVrm8mYvJNIxLFj716L+0p4nuPE/xj1aOY7oNN2wRKTwCQGJ+vIFeebGXBC8egNdkY2Ri3roRspwO4zik2sQeBnt6CpSx/pimvnjd19ulWIiCqCNpaN1YMsithkYchgR0I4r7t/Zf+MkvxQ8ISadq04k8SaPtiuJGGDcxHPly/XAwfcZ718JSfyr1j9lfV5dH+OGkrG2EvrWa2lHZhgMPyIqZpNFR3PvzJ445J6U1Tye/Gac3XJ4poGccZ+lcaNjkfjKGPwu1vHUqq/mR2rsIBtsbMdhCmPyFcl8X/8Aknl7x9+aBcev7wV1UbD7Hb44IjX+QpdS38KHKxXBB7/hTlkGTg49fSkXpknI6dKGA247noaZmOXCspPC9sU1W/ebSCe+aaGAYk8cdPWnhg2OM4pgxfL+uezUcuvLc5/iOKOpz7flTc7evNMkVc+u0dTinc7wTzk0m3O7jg+tKuWOenHHvSA43xZIYfih4FcYCzJdQtz/ALOf6V2Mj7Zea434j/ufFHw7vOy6pJb/APfcZA/lXavtWZgRnkjmgsjjYbmBJHpxT9wwMLxnmmfdPHI9KFYMcZwc8VLuMS6mt9Ns57y6mWC0hQySSMcBVA5JNclp3xGS6vNN+06TcWelalK0VnqEjDlgPl3J1AYDIqn8XpmmPhXw+xCwaxqiR3GDgMigsV+hwKtfEyJPtXg2xVPLj/tIY28ABVP+GKcRaHYOu2Qgn5sc+9J5g6E4bsKfcffYgg9fwqB5reFoluJY4nlfZGsjAF2x0Ge9AXJNu5l3kqF6nFO4GQG4+tI4XzCMFT+YpPLV2z1PtTFuP5Y5FV9Yt/t2g6tbhhmazlQZ9ShFWV+Rh+gqZVEkcsZHLIRn6g0gscX8IpzdfCjwy5PItBHz/skiutzhc9fpXE/BFPL+G1lb7t6W9xPAreyysP6V220gEDjik9yh24t8oB70qxyfNhSO3PSoprf7dazWwlktzIm3zYTtZfcH1rBg8ByW4Hn69rF1jvJMF498AUIR0ZU7STwenzUzJPoB0BBqC1sBYQiESzSjPLTOWP51PuOB8u3BxnsaW4HHfFoGxs/DmsbtpsNUhBZf7rttOfzrt5mDSfljnPvXMfFCwfVvhvrsESfvUgM8fruQ7gRWn4f1BNY8NaTqAbKz20b59yozVAX1+UEnkmkkYRttQZboM0bisY4wD68Uq5KZ46Z+tIBm3bJy23POKj1jWNO8P2i3erajb6dbk4WS4cDJq3HG5kjyMgnoa830fQoPGvxE1zV9XAuoNHkFpZWkwyiHGS+PWqWoHWWPjnwtrUTNY+ItPlAOCPO2sMnHRsd8VuNG0KkE9ehHQ+lZ+paDoniCE2+oaTaXMbDHzQqDj2IGa5vws0/gvxMfBtzPJc6XPE11o1zM250QH54CT129vaiwHXhWVeTg+lG5X4/iB5p54yrHOfemYHJ5z1FAmP29CDn1GOlJjDM5HfOaTc2304+9R527hgDxjmgQ/cWUZzntg0jZ6cevSjI3EDk59adu25JFAgXuDkj6VHuJYhTkAcYOTT2LdWwfoMVkeNNRu9J8F61f6eyx31tbtLGZFDLxyRigZrrIOMHHfrUu4PgEZrP0i8OqaRY3kgUvcQJK+3gfMAc1c43YC8fXmoAkcfNgPnHX6UHG1fSmjnvzjt1pWVfvHj0z3qga0HKOnNOZgDwxJ9veo9m5SS3HpTtxjwCueOCeKZI9VPJz/wABpWA2n5uP5VGh3MM8E85HSlHyseVJPX0p7jY/cGYDt0rlfFnjqTw/rVhoWkaQ+ua7dp5wt/MEUUcefvO56Cum3bfmz34FcntWH42TSPgedoieV65WQ7sfmKBLzGyePNY8P3qJ4q8Mf2Zp54fVNNna4ggJ6eZlRgZ7iuuZhJtkjKtGwDK6EEMpGQQe4PWp/tSuGjlRJoJAUdJFBDA5yGBrivC+fCXiq48JOWOlXSNe6PI5zsXOZIM+ik8exoA7D1JGe3FIzfMNnBPWlbchKt0FMKmNSc57g5pAO/d7eAWYfhXJ/F5m/wCFT+IyFJIhjzg/9NFrrCpbqQuPSub+J0Zm+GPivOMpYPJ/3zg/0oFudH/yxgwvBjXB9sU4x7lBOOPUUy1k8zT7NhwHhQ/+OinqxGQ3QdDUjsK0P2i2uYCSVliePp1ypFcf8K5PtPw10IE/Nbwtan2Mbsh/lXaWszLMqABue/SuL+GaPaaX4g0wqqvYa1dRgf7DkSL/AOhVfQZ1sankA/nUakrIR972NKu7aOM88kdqngw0ill3DPBxQtRHJ+JPFGqHXE8O+GbOC+1lY/tFzLduVgtk/hUkc7mxwK2fDviCLxNoVrqEcRhZ9ySxHloJVOHQn2PesT4cxC38VePzKB9tGtjJfr5JiQxj6dcUvgBPJbxZbqML/bc7Kvb5trf1psR1oVdo7fjSq37s9/rTFVlXJwAOT7UrMVYKwx9KkodtUqCOKWNlyWzznPrmmhzu+VNwpka+Wxx8gzyuaBM5Gwb+yvjZq1qMiLXNLjvAD0MkR8tv0x+VdjtTkZwehHrXG+OnOl+P/AWtE5iaafS5GI/56plc/in612Ey7WYZAYd8UMOgg2tt5780+a4+z2dxPtZ/JjaTbnk7RnH6UyNjIRkL1x8tZOt/8Ja12YtDXRo7Mjb5t+ZGf3BUdvxoFcTwH4uXx14XtNbTT5LBbsFkikZWJAJGcj3zx1rdRt3GCPavJPhTo+u6Xb6r4YuPEEdi+jXjJHFDChMkchLoV3Anb1HtivWkR4Y0RpPOcDDSFQM/lRbUQu5uV6Y70m0bvY+9G/aMHhj2FKF+cE5J7CqAUfLhjyQK5PxEy2PxP8J3ecfbLS6syvrgK4/lXWBfvccelcn8RIWh1DwXqCkKLXVwje6uhU/zoA6r5d2cceoo+8mCeO1EzbZGQjoT8y84/ClWQEY69uakYIAOB9OetT2TlZgG+gzVcsPxoMhEgIHPrR1Ecl8I/wDRfBX9lOcXGkXc9pOuOh8xmB+hDA/jVz4majpum/DfxDLqjA2s1o8KLnBlkIwir/tZx+VRa34PvbjWH1vw9rDaBqkyhLr92JYLoDoXjP8AEOmRziszT/hrdXWsW+seLdaPiG5tG3W1osflW0Lf3wn8R+tO1gOj8Mi7h8L6Ml+W+2x2cSzbuu7YM5rT27kPOD1570SMCD/EuMEAVHuO1cnK9B6j2osKw8Jt5UZOKUISyNjb7+tKM7QenPbvSq2CCeRnP0oEcpCRF8aL4KcedocJOenyyN/jXRs+5lI49RmuajXzPjRdA5z/AGIhPH/TQ11DKPlUgEeo70PcDlvHWp3vh2+0TxBFPIdHhc22p2vO3y34WX/gLdfaupkVBh0PmROAysvPBHBpLi2gvrOazuIhLa3CGKVGHBUjBrkvB01x4W1GXwhqDmWOFDLplxIcmaDOPLJP8S/yoA3dX16y0GbTI7xmQ6lcfZrfaucvtLYPpwDV/csTBQQB9efpXHeMCtz8SPh/p7rkZu7sK3Zkj2g4/wCBV11xC7sS3NMBzMgz83055NSq3zDjBx6VWjVWII4YdQcVM2cgD0oETIwVhk888EcU7dxuA/CoWyzL83GMY9KfxwAep6dKTKuScNyOn60g5yF496azZGSfbOaap27j/d/hpBckycDt9KcvzAjOOPzqNpF9Pyp+45z/ACqhDB97jjHXNPyEyc5HTb3pGk4GcigxhhkHHfrQAr5ZQwOAf4qRW/hPLDkgilzzt6LjoKcowOtACBhzgnnnmlZvlIHUUzyyCMevejOOScH0FAD96ttzwe2ORSScKMdT79KYFHqQOnrS7dq43ZUcZ70CCSYKFDLuycYPpTFkRs4O4Dv6UMoZs/eIpypxxtDfzpiEaQDGQ2T6ClX7x7f4UjJt46/407ceM444PFAxysNw7jvzyKRlEnO7pSIw25xg9jSbhvYE4I6Y5BpCH7RRSbj6/wDjtFAjFUgZB4qW3VWk788UxfmHTnGelEMhRyVHviszqPzb+M1tLZ/GHxdDMv7xb88scHBRdp/LFcyrsNuWY9sc819F/tsfDGfR/E9n47s4S+k6oi2t4yDiC4XO0t6Bl4HuvvXzdbzAcN1+nFd0dUct7MsL8u7O0nHHqKa7Dcdp/Wmbt2B1yPWlB3ZAIBHqM1RQ1l3Y5yM+ua9Q/Zj019S+N2kMiErZwTTOR0AICj8fmryueYRoWkbCjjIFfYv7IvwtuvDeg3XibU7dob7VdpjikGGjhAOwEdick/iKznKyNIrW59IPkt1zTf4eD379qgZnZc9s1LuJHTBxzXGanHfGDnwJkZw15bjH/bQV2XGxMc4VcflXHfFtgPCNsp4B1G2HHp5gzXaLghRjgoMZ+gpR3LfwoF3LkjJpjEjr/nmjceMjIpGz2A/rVkAV3delCqVY8nFAyvXA9xTsngYz7UEsXuOfxpcHAGMDqc0it0PHHrT22kfWgBVTeMA4/GkD5IXPHcdqdyncEfXNR4DNz+lAzkPiwv8AxK/Dk45eDWYGU+hJI/rXYTEeY3T865H4pHdY+HbVvvzatDtVcH7uWP8AKutuCWmYEYweoNAxqnjj8DVPWJtRtI4pNP06PUz/AMtYjN5bD0IJHNXSx5OaX5uDnHpt/rSuI858caR4n8eQacsOiRaHd6ddJd2t5dXYdkdeMbQOQQcV13iHw63ijSbWG7uWsNTt2WaO7tMERSjqQG6qTng9q2HkJA/mKbywyfxpjOetdF8Tw3kb3Hi+K7RSN0Mlgo3r6ZB4NVfiUun33hXUbSa9gi1GFVuLVDIBIJVIKFRnOc11cYwCD09c1U1DQtK1SaOe8sLa6njIKSSRAsMe9MB+m3DzadaSTA+c8Sl/Xdjn9atjCjONtIcbsbQNvSnBfXr3FT1EOMYUD35qS3G24Qg9eMe1R7uenSpLV8XCZ6ZHSkPY8++C0Zj8KajBk/6Pq94hX0/eFsfrXdYDHk5NcN8J1EL+M7YdItenHHoQK7rywuGxkmhgNubSO+s57eV5IxINpkhYq4+h7VjW3gewt5GYX+qzlevnXrkH9a3FBXpyv1pWY7sE8Y4oAZHCIIRGjuyg8eYST+dAVl6ng0m4BhkH604SBcZxntTJF8kXVtcWzNlZY2T8xiuM+Dd19p+HlnExO6zmmtSv93Y7DH5AV21m22ZSBgZrhPhPGtinimwDZFvrMxx6b/m/rTGjt5AFiJ3bjn7pPFEagRnB4xSNgKT0pYm3fKPvetJjJY/lxzkVxmoSJ4B8XXmrXQMXh/WNn2i52krazKMBnx0Vuma65s7jk5GOgqX93JG6SIskUi7XRwGBBHQg9RQnYCGK4tGtxcJfWr2rDcJklUqR1znNcHfahD49+IWg/wBiN9psPDzSy3OogHY0jjAjU9/ftW03wq8GT3Bm/wCEft4nbkrGWVG+q5x+ldDp9na6Tbi0sbaK0tkP+riGAaq4LzHyRiQdcbuSKIkKqBzj360FSMYYe+ec05VZl+ZVOPSpEyONfmY5I3diaUR7XbL89dvWnFvmweD2NMePcwCtj3xmmSLyV4JOfSnxqF+8SSfyNIqlTyQaXhfcfTpQNCsdq4281Q8QWP8AaHhnV7QEnz7WRMY7lTV3cGI5z604Hawzyp+U8ZBoA534a3P274eaDKxy62qxN7MvykH8q6HBDEg55rO8O+G4PCeknT7SaaaDznlVZsEruJOAR2yTWgc7cbue2f8AGkNj0c7iuc+lDRndu6j0HY0xVfzRlh71MFblc7T/ADpIBkeF2hic9ATT9xbOD155FM8sknd3/SnKnlLjJI7CqJBY8YO45AxtFS7cL179QelM8zcdpzkjr2FOOPmGOooAR8ABm5yc9a5nx3ot99q0jxLo8ButS0ksslqDg3EDffUe/cfSumLNGuF5pVkkXawBODzx096CTl7X4reDbxfMl1230+VR89re5iljPdSp71m2t4vxA8baFqWkJL/Yuiea32+RSq3Duu0qmeoA79K7uaG2uWDy29tcOP43iUn+VKzH7qABMY2qMD8qbY0JJI3mEjJPak5b5jSN8rEAnB4pyr15xSGJwzEj9K5v4lMU+Gfi09caZOM4/wBk10x4yQcH61z/AMRkab4a+LY8cnS7j/0A0C6mtp7n+x9POePs0R/8cFSbum0bvqKp+HLgTeFdDZWyGsoTnGf4RVp5AuFzu5yKBlmP7ydwK5Hwy32b4h+PNPAOHktb0f8AA4tv/sldXGw3LkADNcxDH9l+NOoODhb7QYm/3mjlIJ/JhTEjpljIPU5+lc14o/4Tldagj8NLoselGMGSTUd7SB89MDqMV0/Hc557UeYQuCc9hUoGcPa+H/GGj+LovEMt5puqfakS21KxtYTBvQH5ZVJJyye/UZpt7rWr+B9d1qGDwpqHiCx1C5+129zp7qNjMoDK4PTlevvXcMWDghsqeCaeZmGNrECqvcS0MHT21Pxbpt5bazosmgrcRlYwbhXkGe/y8A59DSeCdUm1Tw6q3uWvrGVrO4ZupdDjJ+owa19U1iDQ9Pe9uFnljjxlbWEyv9AoGa5bwDe3Orax4n1X+zbrTNLvZ4pLeK7XY7MECu209M4pDOuWMMx+Zvm/h9PpT9gXO5sc4570irk+/ZqRpWaQ5Hfn0pAcd8ZoGX4eyalGCZNJvbbUBjsEcbv/AB0mu1ljSQLKrYDgOvvkZrH8Yaa2veC/EGmg5+1WUqAZ/i2kg/mKg8B6o2teAPDl8z7mmsIizMedwUA5/EU9gWxu7Vx0PXrmm/ekIJKgdG7UFtzheh+tPXG7nBFILGZe+FdJ1DxBZa7Lb7dWtVMaTISNw/2gOo571pMwyW5z1IpfmDYByenTFKO3H4mgQgZc5JycU/huMsGFRqyxsTweacq7j97OOeaYDmbBJ9RXH/Fo/Z/AUl6pP+gXltddewlAP867BduDzyPwrnPiZai6+GniiJDu3WLsB1+6N39BT9Sep0F1IH3MMktg5HvzUaOdpY5HHVar6Tc/2hoWlThsie0ifd2yUBqePHmAHqT+FAyQYZTn155pkbsy5xjtyaJFKEgN09KSIsGYMF68YNIB7YXLdR047Uz74IxuH96k3MVOR79aVmxhhgcc1QDwy9G4b61GFO7cwOAaF2tyx3Kw4XoacqhVAJPpzQIVQOTuwf5U/wBN3IX/ADmm9fYn1NLwM989RmgRyNxt/wCFzKmc+doW4Edfllx/Wus3bQRjHc5rkdYYW/xo8OOel1o11CP+AyI39DXWs2eByAecc0mUSIo45yenNZPirw5H4os41SQ2upWjedZXijmKQf0I4IrS3Oq/eAI9akAcD7wXPA75pAeVWN9qHij41aONQ06bTptD0mdZXzmKWV3A3IfQjnnmuv1TxvpGlWer3Ms0hfTbgWr2+352mYDYqjvnIwa6vcDyQofp7/nXmvjT4e3GrfFLwtr9tzYRuz6hHnh3RGETEdyCxqkSdT4V8Rw+KNDa+eA6dLblo7u3uCAbdl65PpjnPoam8P69pfiW0e50bUYtQgjkaN3jbOxx2Ncd8QfAereIfElvHpcn2XQtUZW1rY+0t5fQAD+8ODVnxNp9r8PfEmj+ILGJLPSrvZpeoxRgLGB0ilwOMg4GfegDtt23IPHP51LtHBGCW6MT29KR4THIRv3xnncPrQsIj+bOPwoYDNu0EBS31/pTo4Q3UnK+pqRV+7z/AI0KvXkZPp3oAQYVjkdB1NG4hiAMjr6VJ9zI27j3U1GjBz97B+vNADWk+XGD6mpVdXUYJx0APUVG0jchiNoJxTlZmYNntxQBNx345+9mmqo545+tIZCzYBye9N27tvzcfnUgP6/KajaEOwbJbb78U5sJy33vzowGXhvlz9KqwBxxxg845603CN/vEflQx24+YY9DzSM3l87sZHpxTJH7Rgnk8YpNq7WUruB755FKuOQDQq/L1575pMoNx296ZkYAHBxzk9afyrBQcnPGelMAG4ZAJzQSSOo+VuMZ5X+tAw2cDil4bpg0AHrkZzjFAB5cvqaKk+b1H50UCMVflOD09qGHPXj+dIc7fT3zSBiWOQcVB1kd9p1nrmk3ujaxax6lo99GYbi1mGVdT/XOCD2IBFfFfxa/Y+8UeC7u4vPCMMvirw6zbo4oTm+t1/uun8eOm5fbgV9sKRycZHrU0cxjGVY4Pt0q4ycdjOULn5S3Vw2k3ElveRyWlxE21oJomjdMcYZSMitjQPDet+LHVdC0S/1YucCSCBhGD7uRgfnX6fyiG5ZjMiSNjqyg1Gqwxr+7hjjPbaoFae28iVTPlX4MfsjzW+oW+u+NmjuJo2Dw6cvzRoR0L/3j+n1r6ojjS3jWGMbI1GPlo5PQ59sUki7Wz3B5PSuaUnJ6m0UPVSyg4zSbdpOSB/KjdgcfTOaRsheTyKkDjfi8dvhbT+Nx/tO3H/j4ruJF5xjovXtXEfFpi2i6LEOS2qQg8ejZrtLhgTggn5R0+nWnHcuXwoeVA5JpGfbz1HtUaknjOW9TQ2CcHrVkDwBjjkH9KMfKMZznINMU5zyCelSRrtDYwAOcdKZNhw9+CPWlX5sD7o9abu59R6Gm7ivoAeoxQA9m4IJ2r65o5VMkFgPSmFiW55XHFID83Bxk+lAHLeLP9M8deDrN/nEfn3X0IAX+tdbKxZj2NcfqjNL8X9EX76x6XMSPTLLg114ADEEk896TKAbWU/wn+dEa/KcZ/wB3rQq9+v4UrSAqBk1ICeS0mQRgHt0wayLfxZoN1qraZFqtvJfqdphDc5HbPTNVPH2oXNnpFpZ2jeXc6pcraJIOq5zuI98Zp3/CC+XpcNlpl42ktCuUmSNX3SddzBhzz1qgN0c8EkfUU3noOtYfhDxQ3iD7dYalCln4h0pxDfQRnKP/AHZUzzsYc81uM21uDn+lMCVTubBIx79qkRc4OPl9c1Cv3vvYB5qfcG46FR+FJgKcr9PWpIEVrhCBhsiolYrgjkY6elSRthlOM80IDhPh3biHxF4/iTOV1gvt/wB5Af6mu1BK47DFcZ4Gm3ePPiOoxxqERx/2xWuyV1bdlsHvxxSYDxhlz0A756U4qCoBJB9c1GXVY2UEEemKamA/GR6+tAEqqdpAGfSmceZggkdOaeW2/e/Cmkj5iD70CHx4WZWA9txFcR4TRbH4p+ObRAdsgt7ojtuKkE/pXbR4JBAwo6g964jSbgQ/G/xPAwOJtNtnVvpuB/lVIEdv5YXnH4GkAGcdD/Kh5Ny7ieaFJU4H5mkMGjCtuHPGPahyeOoJPrTsjHLYbsKYdrHBwB3pALt+6WGccUrYZiCfripPsrN6+xFQSI0LYYFWJ6Y6igBzZj4yS3rntTcsoGDwe1ORxxuJZfTuKYzR4IDdOaYmTKCRzyOpFAKrlc5NRRsBkEkE9/WpCB90HHFMQ3GGYD/vrFPZSeg2/wAqXcB3564xS7Axz3x2pDI/LKgNnaDwc0vKqccgjIpzYZSM/n3qNZPm2jgj9aYg8w7ssAP9oU7JXvj1FJ5ibv5+1KuGUE8Dtt/rU2AQxkjGMHFSMoC4O73qN2JYAdenNO6cE8+lMQ8fIpDHpzk0m7ex4yM9qFdZVZfTk5FIuCAAce9MB/PIA74NKdq9QQKhY7GH3vXHapAyscDrQA9iMgnkimtmTaSckdMUYDK2ACOvNMkbC5J+UHkntQArNnPB59uKcPukgnj8aVZFbHXd65yKN21iQcZNAhGX5PRv0p23y/kxjikEnXHA+lJuLc52j6UDHuQV+ZeKyvGEkcHgbxHJKu6JdOnLDrxsNapBzjNc98TJhD8L/F7f9Qycf+Okf1pEoPh/G8Pw88LJMQJE06BTu9dgrcG7dyvHpmq2k7I9B0lEXCraxLtxjHyirXmFl2/KR1zTGLGfTj29K5nWpPsfxZ8JzN0utPvLUY7kFH/pXULwB83/ANf8K5Hx3IIvF/w8u95JXUZrYdv9ZA3/AMTRuNHXNgf730pm4s2Dwff0okkwSCdxzimrMG56fWkSLJEmQVByOaUkbuCacvzLk4A6ls8Ae9cbpfxJvfEmpSx6F4cl1HRbeUwyam0yxhmBwxRT94D1zTHY7NGMbcDDHnk8VLJI0ihnbPfFQCQM20AgHrmlwOOc96QwWZVyPUciiOQFgR07CmpllXJGe/ekjCbmHIbvxTFct24WZmUjlgVxjjGMVwXwXkEfgEWT8mwvrqzK/wB0JKcD8iK7q1kIkQqy9eN38q4X4axmz1Px7ZMQEi115QD28yNHP6mm9RI7TcrZHahcMMlvmDZHpikkkHy44/rTmZWx82D7VIEnOcZ/HNNZjyD1HFInC5BzSLIN2SMk98UrDQNIIkzt4+vSnFvMw4Ax3P6VGxdZMPjdjj3qSLEYAHTvTJAYTcwXPOMg02+tV1DS9QtHGRcW0kePqpFSfI3O8gY45p9nuEygOCOmTT6i6nIfCi+a5+GegGZvmhhNox/2o2K/nxXTbWyxDEZHXFcT8KyIdO8Saafl/s/W7hAg/wBohx/6FXaqRnd09R1oa1KHKTCo3tx0+tO+XGevt0pquFO1sGPHPHem7QwIJ+XHpQSRXl/babYXN/ezJZWUI3PNO2FQVzdn8VfCV/cQ26aq0Uk5xDJdW8kMch7BHYBT+dV9a0y38TfEzTtL1EtNpumaeNQSzf8A1cszOVDMO+3H4Zrp9e0PSfFmlzaZq9pFdWjrt2MuCvup6qR6j0oGXHTy3G5eezUke5txxxnjvXJ/D27urVdV8KanL9ovtCdEiuG63Fs6kwuffAKk+q11Yj/Eeg60uoByxLANnPIqZTn5s7W9KiGMgKee1KH2tk8HoeKok5TxMrRfE/wPMQNjQ3kecc5KA/0rr2+WRiPlGa4/xo/leNvALA/M95PHj2MTE/yrr5G+8Ac//rpMqw3O8+596exK8qOOpwaZuz0bH+elM3beFwfXPegRL5m9vukc8Gn4LKD3znioWkU46c+lOVupBx/KnYCRpOeQOTnFZfijw9a+MNBvdF1DebS6XaSn30YHIIPqCK0VdcYPXvzS7gB1+fvTEQ2tq1ra28BZnaFAm9+r4GMnHerHPVR+lJ5y7ck9DzShu4I556UMBjMyjPbuaXzPOw68L2AqNySeCNnt1pY8xsefm/SgCTfk4x/wLHFIyhWU4HJOBTcgcgkqexHNKArL03H3oAVl2qSMY7gjNG7OMDjtmhtpyC2Djhs01lVVbnLUATKwZiM4PcVFhlkyGyO4zxSKxQ8EZA5U0iyI2Av3c4NADmU7vUfSh9vmA42kdfTFEZClufm7cUhkDdTlc+vBoEOz1CjCduKXcFRgEGW5PHWmZC9RzSMynIzjBx6YoGTLhV59M5qNl3Ar0DUwe7cY6mhHG08Hd2oJFydygcHu1P5HLHHcmm5OPlGD1o3CTBGc+lAEu8/j7dKRmI7Yz27imbgMDnHpmnqFZuCc+9Ag3f7B/SinfN/s0UAY27sTilHzYOKbtOQOh6ik3NuGD9RWR2Eu31+uKXj2qNZlK5C/N/OkaQ56fnTQh7HjB6U0rjJHORSSfMqk8GkYHp/F25psByn5gp4I9qJCWY+vvTGYlsg4p20dRU2ATjgEYBpfvcdPr2pHYbfmIpDkKcMVJHpSA434sAPp/h8AkH+1Iee3XNdxPtaTkBiR0P0rhfikSsPhiPPL6pHk54OOf6V3MwEjA9+9JGkvhRFxkAZXpnmlkVl6DNP46H86Y2euT0zitEZjkTd1H51IuMAY6dqap/dAbi3fNKr4Yn2pgKrexHam/wCsLDbnHXikj3clm3emB+lPZ9vuKAFXaASRx6UR7WYELj6io/M3/e6e9SpjcvAJpEnGrib43TnLFYdGRQPcuf8AAV2DH5jkfjXH6eD/AMLm8SvziLTreIccckk115YMN36GkUIZO9OXOcYH0oUpIpPpSLIOMHikByfxYgdfDlpfxStbtp15HcedGu4xjOCwHfGc023+HcFysV3fa9qusiVBIrNc+XGQR2C4rr5FinjkguI1mgkUo6OuVZTwQa5O10XxD4Pje00E2WsaNktBa6hI8c1rnkqrgHcvoD0qkBj6lo1v4b+LnhifTY5I3vbKa3u1aVn8yNSCpOfQmvQ/3fnGNWUPgts43Y9celc9oPh2+k1yTXNbeNtRZfLihgOUgT+6CeuT3qn8SI30u68Oa/CCslterbuydGjkOCPfmqBo63cPTkVIBuA4/EUkrIs5APHY0m914U7lz0NSBIrDAH8Q6UkmqWljJbLdXMNq88gSLzmCiRvQH1pvB5zlsYx6VX1XTbDW9PksNStYr6zl4aKVc/iO4PuOaVgOW8GqYviH8QgVC5vIsep/dL/9euwMJLbg2PYd6xPCngfSPA63kekm4C3knmOtxMZTnGAAW57VuA/NluR3qmAbctgn35p0YU7uCpHNIANw7Z7UqfIxJ+YfWpEO5bgrkY+7TlRVwMYHQVGjl+c9sDtT1Y5ORSKQpOOBwP0ri7pks/jfCduPt2jnPvsf+fzV2pUjjrXGeMP9G+I3gW5Ax5puLZj7FdwH6U0T1OxkQBgQBweeex7U3O4k4+lOmX5vlPBPGabuOSDxikMT7zL1LAcVj+O9fbwv4N1TVLfabqGPbEHH8ZOFzWwT+P04zXP/ABK0mXXfAWq28Q3yqizoPUod39KAMPSfhKslpHeeIdZ1jUtUkUSP5N7JAiEj7qqp/nVzw7qVl4d1EaVqGp6zaLcNttINdRShf0jnGck+hOeK6bRNWXWNA03UIH3RXECuGXrkjmjXtItfFmi3mlXyhoJ4yATyUYDIYHsQRmq66juWmVlYK2d35inbd3X146VzHwz1W41nwTZS30nnXluXtpZW53FCV3Z/CunZizKCdwPGe9FxB5K7s9TQflYjv+tOI5HOPahuSQfzouAq/NjaPoRSqnzAnK8c8daYqncAD09+Kfuzhdwz3FACs3J43DpRMIbOLzriSO3gx96ZgoH4miMI0yKc5PrmvNdK0eD4neKtU1nWQ11pWnXD2dnYSE+UWQ4Z2XoeaYj0e3aC/Uy2k0dyn96KQMP0pjQssgYMAy9R6iuR1z4dus9vqPhI2ekajbci1EASK477WZeRnpmtLwn4wg8XC4tpbaXS9fsT5d7pk/342/vr/eQ9QaANzcGYEkgjkc07azLn09etM2+Xy2T2z0p+QGGDzSEAz6EcYzmnKvHHykd8UzJbjaR2p8cm3PfnpRcLCli+3IAIGM460nzquSAy9aAQzc+uBUgYdMfjQA3d2wen4UrbWULjj0xSZ5x0yetKMjA25PXNMQsatzheBzg0NGB2+U1yXxQvr7TdD0m+srp7V4dUtzI0ZwGjJ2sGHcc118mQwxzuGd3Y0gG7SB7DpSsrsgxw3TpwaaJMqFJwR7c04fMoH8OPSgBduF2jr3Fcx8WbdpvhP4tVDz/Z0jH6AZP8q6bc6t16E4aqHiizOo+DvENsTgS2E6Hb7oaBDtPlMmi6W6sAjWsRBH+4KsxspUDOH7isH4eXR1D4d+FrgsrM+nQll9Tt61vcc9M+gpgP3YHA57DFcZ8U1McPhG+Hyi116Fyf95WQD82Fdoh64bIPPrXLfFaxuLjwJK9nBJczWN3b3oSMFnxHIGbA78CgDqJUOW2pgEkg01V4HH1BqDR9a03xdY/bdHvYL6DAJ8s/Mhx0ZTyp9iKt7SjdSSOueKAsc38SrubTfh/qzW+5JZkW3Vl/h3sFz+tc1q2qeGtGt9P8Pad41vdPu7GJYhaaHAtx84HJfCnnPUZrq/iFpsupeBdWhgG6dEE6KedxRg+P0q14Tt9Lh0S1utHtLW0ivEE5MESruZuWJI75Jpp2AxPhz4vvPFEWoabrEDW2uaY6+azQmL7RG3KS7T0yByOxFdcFC4yMrnjHauU1ho7X4w+GzFxLeaTdJdKvUKrKUJ/HcK6uT5uVbPOKljEOdwweM89qcuWbb94DkY61G2cA454xn+tAVt5IO3jtTJJFG2T5gM5rivCf7n4l/EO16ky2twF9mhA/9lrtYx83B69K4nRf3fxw8ZrncsmnWTke4DCgEdlhR8p+cdfpSqAxHH9KhmVFUEkjH8VOUBtzK2ce/WkBLJ8yghcZ6mlziMHPzd6Td3xRuAwAPx60AJnOO4PTvS7grAkAfhTduMnn+lOXDLnoMdMUwJJFVs4GV9aEB3gqCcHkUzcdp7t3FJtDdd2PVeDQSch4ehbT/ij42tAAY7qO2vwvuUKE/mua65VG3hufWuU1Etp/xe0eYHEOp6TNC3u8bhh+jGuqLE5G7LA/lTAVfQYPHfrSyKTH5YXIbjPcVGFDAAcEdiac2cjac460gscz4qjn0PWtJ8UpC08NpG1nfrGMsLdyD5mO4Vhn6Gt+01LT9QsxqNpfWk9ht3eelwu0DHUnNXI5iPlbkEEEHpiuV1D4beE9Uumurrw7p8kxbdzCMH6jvQCZkeFNZt/F3xW8Qa3pbi50i1sINMF2oPl3EiszNtP8QG7Ga7xHLZ2pjuAen51FZ2lrplrHbWdtHaQIMJDAgVF/AVKrHp+nrQUOIPOF6dacG3qcqDn+99aYx65pVA69+vNBLOT+IrLB4g8A3B/g1dkJz/ehcV10km2RjjHPp1ri/iw3k2XhK4XOY9ftQeOgZip/Q12c6nc3se9HQfQTd83OAPb1pNyn+HI7mmBjs6YJ/SlRTH0x+NAEiyYXGMg9OOlLvVQTj9KTIOTnn09aNwVeOnU5FO4hu5R9714yaCxUgAZU+lN4ZhuXPpT/AJR0PHXk0xDmxwQBmgnOBj73SmK2ef0o29CH3dzkc0gJNgXPy4Pem5x7+lJ93lTlf5UnzK3ByKYD9xDD5vz70u0NlidrdRjoaZHhG6HHoelPZhnbtB5796AGN3wM54OaRQXjDDkdPpiiQrzjrjjFLHMACSB6fWgBzZCjAJJ680oUtyAB34qNXP8AESDSphcctjqakB0bbW+7uHUgUu1OQTxnFRyOrMdoxnkGo4+pLcn+6KdhFhux4I7UgbOcKAO/oajK/L97B9BzSq2VPOB1+lMB/mFQw27j2pyMFHT6juKhTvzxQOuCc+9AydWwxxgjtUf3dvGMH8aE/dtkHaelJyvGd3PJFBLHLzjj5uPmpSAGJPORjmo0YHGDuAFPUDbh/mOMZoEO8tv+ekf/AHzRTPJH94/nRQBmcZ5ODTDmPHOB/wDXpg79qVQWfgr05BFZHaO3c5x/+qlLGQ88f1NIy56//qpysFyuCMjOf6UyQbLYJGaZkjpkin++fm7U37zZPSqAcWAXkYHShcsoGcfTvTvlXvuH0qJmxnaMj1zSAa2ecn6U9cMc9fXHemo2eO3binY2nIGBRYDiviUhk1HwbF/BJqfT0whP+NdzIcO23pntXEfEb5td8Dhf+gk3Hv5bV2rSbZGyM846cVmjSWyFVm3Dj5qGfI6cnsaRmG0YzmmhirHIzkY46VZmOALcYwepFLnOOMGhW5yRikZ9z4Xk0IB+d6g9COxpu5m6nkdB2prSj5lG4EGk3HjGAfrVATD5cjvT4pAJEOO/PFRj7uPvAUDpnBGPX/8AXSEzhLi48S6D4+1q8tfCMms2N6I/LuY7uNCu0YwQea6jRtcv9QZl1Dw9daLJ/eeVJEb8V/wrV86Rc9Qvrmjedvue1DaGN24bpx6UN8uMHjFO39xwKbtDYz6VIDl+YEjnjml8wqcHkHpg1EgK7hn6Gn7hkHn0IoGP3Hdnqf0rnLz4e6ZeXy3IuL6JTKJXtVuW8hmByDsPHWug5z170u/jGOPpTEKykn/doyB6j0pq55x06cU4McZxke9AAuGPXBpygryTx6ZpmwfeA6/pS7jx3980wHbQORz7AdKU4PRcjPPTj603zOgxz60u7DcflUgPA2+w/pSK4RsZ3E0xd/PP4Z4pm7rTAn2hVLDv2NPXPHGVPeodx24Hyn+9nNL5jHIJ49uKbAlRtuO3P5VxvxGdbXxJ4Euj8iLqTRk44y0bDmuvVtq8HPv61x/xctL2bRdFvbKyn1FtP1GK5lgtk3SbB94gdzimhdTspid7Acjv7c1HtPrkYzmuXk+JUl8Suk+D9eu3PQ3cS2qfjuOR+taehaprt1cf8TbQotLjC7kkiu/OP0YY4pNDNjt71KrJuYMNwIwV7Y7ioOfXB9PWnnHcZAFSgOOghvfhzLcRQadcaz4anlMsUdmA09kx5Zdv8SemOlRat45utTt5LLwzo2pSXs67PtN9bGCODPBY5649q7f7QQowec5pJLiWTg5wRj/69WBi+EvDaeFPDlppiyGRohl5DzvYnJP55rXG7eAMk9PWk52/dPuKTq6e3OQv86kCTcrMO/TilXG44CkjimMeAFGB0z/9akhOFKnk/XrRYQ9XG4g5A7UBFLZIAOMZAzQG+XA/DI6UnnFVYgZHfFFwJ7ebZNxzg5NcZ4RjHhnxTq/h+baq3krahZMekitguo9wcn8a6tpg+c5B+tZ+vaFbeJrKOO4eSC4hbfBdwNiSFvVTT1Ea20o3Jx3zjv6Vwfj6RLP4keCry1wmrySPDcFPvPbbc/NjsDjGa02sPH0KGCLX9Hnj7Tz2LCbHvhtpNT+H/BcWj6hJqeoXMmq61MNrXUnAReyovYU42W4zoJGSRm2jPqDTWQcHbkjkZ6ikkwrg9/pxS/eYDOCemakQLJgkEbgeOlDK65x0NMZlbt0o3uuDjIB656Uxkis27rzSt2yARimEnae4/Wl8wfMP4u2TS6ki/wAPHzE888U8cZ3LuWmK7Z4GT0xUm5WwensKoZmeMtMOueD9UsUXM7QmSPjOHX5himeD9cTxH4T02+RwxaILJt/hdeGB/GtqObDDjIJ5FYXhnw3b+Era9tLWWWWC4uXufLkx8hY5IHtnNAI2sbuvXtQePamI+6Q4/L0p7N8pHapABkKdpwMc1Hd4Ol3wcjZ9nlB2jHBU0u5weDxj71RXz/8AEp1IkZItZT9fkNVYg5n4R/vvhZ4WJChltFxxyACcV1Qk8yRlA3YHfoa5T4Oxj/hVfhbPBNmD+prq2QFhtHzAdc8UFDlUN0OO3FWYZJI+Qcfh0qokfy/O24DnINSs20gUgOf1L4f6Dql6dQigfR9Vzu/tLTHMExP+1jhh9QaWw1LVtC1q10jV5xq1veKxtNTVdsh2jJWVRxnH8Qrf3fN6kdRmmkhmUgKTGcqWGSueD9KYbEyyKr7SNyMNpRhwc9q4ZtP8T/D97iLw7plv4j0KR2lgsp5/Jls2JyVBxgpk8DqOa7NWDZ3Ag57U9ncDqew44oQjkvBPhvVI7698SeJ2jbxBefIsUJzHaQg8RqfwyfU1a+IEF1deE7y70+aSG+0/F7D5bEbihyVPsRkV0YcORlQRnp+NcZ458aXmj2mpaTH4b1K+urqBorW5tUDwHcMZc5+XFAHTaTqC61pdlfREGO5hSXdnrlQastK1vDK4jkmEYyI4x8zHHQVl+F9LfQ/CWj6bIf3traRxN25VcVqNJtwc8+9Ajlo/iJdlXCeDdft3+6JZbZWQH1IDZxSeDvDup6freteItYuIbjUNUWNQkKMixRoPlXDc966z7QVK/M27uO1I8gU7uSPSgBkkizJ86YTutMVNvA4UfhSO+98449RQqsyn5cKfSgZYXOOeVHak+9JkAe5Api4AHP5dTTIlcSPydrc7fSgRJudVPGQD+X0p6MwOS3bntUbMBkHqKaJcnbtJHegCViDJkfe7Y/rStwBnk/WkyFx+tA27RhiQTnntQI4D4s6tPofiH4d3ax7reTV2t3buu+IgD6c5/Cu+kH7zrgDNcx8UvD9z4g8NWb2SLNqGlX0OpQws2PN2ZDICehKscfSoP+E513Usf2T4A1IOR/rdZuorWMe4CsxI+goH6nWKoj+b9aXcFUDG3msjQ7jxJM5/tu00m2hPSOwmkkZT7lgM1r+ZmTpj8OKAFHPIP40gYtkMMgHH0psjeXzjjv7VCq8kkklhkEr2oJLLYXKMuCPTjNKnygEgqc/hUaxjbnk+3ehX8vscds0DJQDyDgfyNJtLDIO4U1GLL83Xsw9KhvLWa7tiLa8exuBykqqG59weooJOX+L9vJL4AnuYk8xtPuYL8Kp+YiNwSB74zXQ6DrcfiHw/p+qwFjBeQrMm7hsMM4Nc14gfxwukahY/2ZoutJNCyLcpO1s4yOrJhg30BFavgvS28NeCdG02U+ZLaW6RsFPGe+Kb2GboxnA59qFkzjg4HUnnNRKwXaCWPQbqkaQhRgZ96QEgY8d+v4UKy99oOPpmojjnd1zilVV564A6HqKAHA5JHUdqGAb/AGv9k8UL+7jKqAQOmRTQ5LcjaP72KBD1UbgzDOO5pJIvlwP0o8wlunbj3qRcZ4U/XvTuBHtIYdC3XjpT17YHI5phk29AAPbtSJcKZArH5z0NAEzruYHPIpjK6kMRx2OP60GQr0GD2NNdiynI9zTAXcNxB2g01tqpluVHJPcUjSBoWXqOvXpTY96qoOGDcUASBt2AOcc+9Hzrk7uMZxTRnzMYPSkLO0ykMvlgHKFe/agBTI247ef9k8VIVyV5A55JqKRiGyOQeCfSpMnbj+QoEIy7lypyw5+lKrZJz8pHIP8Aepqx9SeB1+tKsa/wjI6/SgCTaWxhun9aYxzyenXb61GuWONo2g9c81KzAD5m3HsRQMAoYmQcDP1xTmJYjjnsx601WPfqDx2zTWBLAnJC88GgB20x8EgN3OOtPUt0IB9QP50jbtwDLhe1MDHcAc4A4NBLE8wf3Hop+/8A2T+VFIRjgkr0HtS8Mfm444IqNSQuOvY8Uu0EY5welTY6xzM27BPPencqw4weuaauFUEc4HNGV3HOcdaQx24tjJxk0nP3Tx7DoKRlKjnkdd1NyccdeopiHqpzjOPSl2tu689+ajVsKMk08nHTpSGP2nbyNpHY/wCNN3Y+706UO2ec/XmmsS3H4Dii4jkPiB83ibwQUGR9udj/AN8EV2kjDccKFPvXDeN8nxl4OiUZKzSOc5Hy7ev54rt5O5wVPf0/OpW5rLZDTnqOP605Tu7YOeaB93jOKCu3Jzn3PFWZCn7pPHNLxuGRzTG5wQcduaVshcnls80wBWPc5NG5kP8AjS+WG5IJyPyNC/KuBz9aAJBhs7TSr1xn8KQgAY7U7jBx39BUAL0yM/UetN9f54pd2PSmNuz1oAF9OnPBp649MHNNXjIzxTZM4LcUAP564yKTvg5x60wllYfz7ULIxXHU9/yoAk/n/OlVvm9iOlRr+IFO2quCCfzzQAKfn/Hin8KzcEVGvfPPpTtwCjjH6UFbjh6kLmkZs46Y9uaD93OOaO4APFAhdnzHn60fwnP6dqazceopGY5AH49qoRIsgXIIB4/WmptySAOevvQvYFenvS9MA0uoB9zOD37U5gZGyOB0oADZXHakHynn8vWqAevAIPI71IsxRsqOc9ajzk5zwfxoVk5POfyxUATfaGdep98molkcs3zD8Kb5wb1zj1pSA3JHTpTAXcVkPCkHv707c3HOPbpmoBjd+NSbvTkLmkA5vQcfhUe4q3Ube9OkZDgYIbuahZt309aoCdSV9CG4zSthcg/XFRRsGIJU+mP60rNkYIxk9qEIN3TjPfoc0HaxAz8w70bOvJwfypqLtY+uKLhoSKwxjoR+NDL3zyOfrSbRwwyPWhyEwSOD+NLqMSNeueTjpUmfmBHTpkUxWVeGyM9DTtw4XOMc1RNx2X2n0zxnvSLu79aQrubI4FDdMkcUgFeQKwycAcfjTGxuxkEdaFGO+cDq3Sl28c8H2pgLGRyMfLQ2UyQfzpB16U443AYGCc/SkIashK9QB+lP2nALHjsKbs3MOCMGnrtbO7rSGKVyOtNXOcLzSbc845780ybYwGWPHTGfypgSqxwQOce9NkkRcFjjkAYpN2PUilk3lVHQA5piDJDFs5/rTlkJGCdueKZGuDjGPr2puB36rzQBLHuDYX8RXJeNPiBb6fZ32j6XpGq63rVxDJAsUFsyRRsykBmkYYxz2z0rrFYKwJ+uTUwuHVsg7h3xx+tArHP+ANGn8PeBNA028VVu7S1SKRVOcMOozW62WXI4bOB70jYkYH1PHoKPlXPscVAx65GRx9MUrdj781HgKe3NO3AqFJBNMAK7lDD9acrdcEZqLdt4A/ADNC4XAJJ9een1pgSbm/4D3pPMLDk4HX3pFYjjjHqp60vG736UwHRkr0bjGcrTvtUi59OnvTNp29OB0pjvxj9e9ISBrhnUg8c8880iybjuGAvYU3zSuF4bvkcECo2bHA6/SmMstjaM4LZpn3xkrz03elMXDcH8eKGbbjng9AOaAGneqgEhm/nSxj5uTj9cU/cAvAA7nNNyRyASaAY9VIbk7jS7i2AOw70gZSd3PNIkmclsKPrSJFB+cjHHT3pFYAAHGc+lJI21vbHX1qHcWk49efSmBdDDaM455oHG7GCMdaYoPrQW25x909eaAHsGmjKbv4cCq+n/ALu1UFslflI78Gp8qnIztz+NVbVCs1ypJKlyR+NAFjcx+Yn5R1xSYOMEc5pVXsMcUw4Xjcdv0oF1GzRv5LEHcAOnWo4egyeDztzzViPEIb3qDy2jbCgtGe5poBsUn7xkD8dR9O9TANJjn5cfTFV0hc3yvtwuNtWmB5GBuPrxSAXyscryfbqacoBj5HTn5utRs3b17+hpm/8Aeckhu3HBoJLAb5CB0Ix9Ko2sjS28asQCOOasr+8YAsQOvBqrZho7i4hIG1W3BRxjNAEzfeGQAw4PoPenbmBGcbfXuaVmYKCMn/aJx0pjZbDxrjJweelAD1beufQc00MWYknaeoHY1HDG25iWO/tUu4liu0nAx7UAOB3E449gaUfu2Bxu59elJEu1ewxyuP609uM56n8aAGyDPBGF/ve/YUu4KwGeT+VN3ZYIwX2weDTxgD5kyM0AIcEjJ74pp+8uOvShvlGAM96bnzWOe3QigB65Jwx6+nShRuXPbp1pjfdBPB9qdhR25P6UAO2gqSSAO4z1pi5KsM7gQc44x9KUNgYOcik2hVyFGecmncBGkdnUbvk96ew6DIb3ppkRcBgQc4IpsbBsqoJIHPr160wBt6seck8Be1SmUsoO369jTCmVUjkgdzSxoeT8xzyaAHmQleDgDtTPmUruO7jqMfqKVJDswVCjqMUu/buBXHc89PepQDFPmKQecE59KkGeMDBHtUcOHjLKADnNSN824EAZ755FO4h4YMMD7v8AepHUjqcZwB7U0KI2BIwc8UMyMy5APOePrSQx6qVXBPHck0nyswJJx1xnrSM4XgZ9hQQFYgggH/CncQu8f5YUUvlx+goo0CxjKowSOlLkAD0pm3p3qXaAoxzjr6VmdInXocc9aRs5564pNw2jPA9aC27+HPYEUykEjE8Yyv6Ck+ULR39qQttPTHrxSEOXj1z3pcrkDIBpgPOeeKVm+Ug49aYDyP7vftQG+bnpTd3Ix26U1pNrDP4UgOS8WAP8Q/CfJBRJfw4rtZX3deVJrh/E0xf4leGEXGfJlJ4rsZFAbG7qewpIuWyEGVYHPH61MuHXmo9p2ngDHTNOUHZuPr0q0zMF4wvanMpK8jKjnnmkyW56HrxSjeOOi96AABgcM2Rj8KflemcYHUcVEudwBPXnkU8+3SgCTarYx9BQxI7Z9qbzGx4JNReYfMPqfWkBP93A7U1pOmWX69ab94kjg0MvybR+vSgBWw3IPNCdefvelCD8scU5mO7GfzFIBQwA645zj0pjKeoAz1pThTx17UgHzYJw1ADlYtxtw3akHynBHzdcZpMYwM9/zpQm5cbsY9aAFXdubnHPFOJxxggVAh28YBPrUu49ScHNA0P4GCeDimb8n270n3WyeaUjsCQDQtwDPzdR9KTcePlBFMBC8k59DTmO4cH6VYiRcnhm4FKuew5zxTC27GOPX1pVb5sk9elIB/mbcnHsacp3duD+lRMAyrk49+1SRqy980ABJXo3NKrbvx70jKDnFDDjg4qQDadxywyPzp4zyCMj3pjZxnvjNKpJQ8/maoBeFY4PPem+Z3A47gd6YwO7+9xzzQqg9Oh/SiwDyCfp9OaYzHbhVwRyKXken+NMYMGGO3vQgHqxG0k/iKm2lB93kjpjr71F5Z24z15pdhwMHOOlAD1zjGOPTvSLliBnjocUpB2gA89yaaFJOd35UAO2t3OMdDij5dueg701lPmAg5IpWXdk9R+lLUB+w7yM9uaax2rgHB96Pf269KRQSST1zn2oFuPbDD5ePQ02TcoBPOeh70NjhjjPtSDCyYyRu+83pTEG/wCoYjpTuT14PtStHtYNnOaTceR+tJiE+Zc4HX0pzfw5PPekXrg+tJu4/vH0FCAXayE+hoXO07W5PamSM02zLbNvoMZpd3zBSef72KLFEnpzt+lM2jII4Pb1po+9nGcDPSlZd+BnHf3FMQu4c56/y4oVt3GcKetDR88H68Ucj5RxkUxClduOdvpnuKNu369frR8wU554pqsW55oAezFmA2/7vv707cdp6jPXFN6jJHFCkdM80AJ/vP36VIVLd8DGaaFD5UYP1pADGCOvsOlSA/g4XHPXmmMox14/rRlmUZGCaaww3JyDQA9m3MNzbO3tmmv+7+Rjlhx096TZmT2+tNWNlz3X0pgShtmckDH8OKTmTq2d3OD/AIVGqg85wf8Aap8a4U4BU/oaAJGk+UAqM9uaYzjcRnDHoBTdvyjGA3tRt7lsj09KBIVnIXIxg8Go2lKshOAenXmkkjZlUlvlxw1Ece47c7jjjNMZMCGUnJU+uetJsC42nBPamfdwvJPrTmXGCBkdckdKAG8c9cZxTlYjJPA9aRpCqnIx2NNVQVJPHcelAMl3heGAwf4hUTIjBuOfSlaT5cDkY6f5/GkSNz1oIH+YV4ON2O3SkDM2VyDzTNvzYJ7dqRVKeuaALG47SMgHpmnbjgdD2yehqLB2fninquRgsvuKBiqzFvlHHB+lQxsFu7hSx24BAz79KmVcdB+ZqKSGR7iOSEIGAw2/vQIeWPzEnauOO9LuIwDtY1G32gHJhQsePlcY/LFSZk3BWTauMZyMigBVG7AB57Uoyu4hiPVaOuB0A4pihlb724evSgZIfmXrx2qJlbJBYHsQRTmYq2OzH0pkjFSd27rgFeuaBMczbGGNuMevNO/hI4I757UhQ/MWyT3JFRKx/iJ9M0hEy5XGOOciqckbLqm4ucSIBlvY/wD16s7tqqufmJ71U1K6dJrTaPMy+CvcL61QItRkqpwe+NtKHLZyQARxnrSKoYcZA7DuPwqPdtkwPvYyD2PNStxi7ikmVY9MYFSZDPtBZc9cd6hVfmyep9elSbS7M5Oe/rTJA7ovlyD/ADpW3ruG7KtzzUrZ25xgt92mFdq4Bznt3zQMJG2oGJ+XPOKXO1d2cnHbpTPmx0Ge/NLwRkn5u2DQMd5m5QMqfw5pGU7cpwx6rnApqqeuOPXvUqk4HbjFIkar/wB4jI6UxmG4HcSRzt9ac7bd2BuP3sd+lJl25XC45APaqAFO7ncd350RyCPODvGeabIrcsrY7NjmkjU7SoGGByP/AK9GgD5FEwx/F9eaZHGkfLHO3kNTj8uSTj6Um4qc/Lg9u1MB+DxhgWxnjkH8aX5mYDJVfSomO0jotOfscn67aAJI2xwSSOtNdMnr83Y01FJwd3GOO9K2ApxwDxU2sAmCuRgZ7HFSeYqpluTmmKo2nBOf601WYbi3LHqV7UwJtySKSpyKU5O3cOOx7dajUFWOMcU5pgFLOD8uPujNIBy4Xkvznp0pFBHJ/lSbQxyAOcZxTizMPlzx/OgQ/cfWioNzev6GigWpm4AB457UN1AzgemKQt8vqaM7eTyP1rM7Qxk9hS7QoOKZwQQD0/ipSxz3piBSegOQKaG3dc4x696cA2339qRgF6dfencQ4cYJz9RzTGPJH9KVtjLnOCKRWIAz06j0pDEOe30pV9TyDzTz8688HoaaileGH40DOQ8QJv8Aid4cHQLbSn35Irs9oGcnnoDXGatGZPizow3gBLGRiP8AgQrsiw3MeAOhpIqWthwULjPJ96QscZU4J/zijIZT37Ux2wwyox0BpmRIrfLxx70v3ff370wHGeMfTOKdkPwOtAxxzxznHvSiTqrDJ7CmopC47EdKMDHSqESM3zc8HGfrTVHzbhTcYwMcflQMcdz2zTAlJXdgHNIrE9Wxz1pnrg/UZpY2BUfL+dSArZ3EA8dfajfwBnHtS7iOV5pmQ3UfSkBI2AOgyKYGyRx+VBbJAI470EY56t6elIdxfvcAc04Ee3TkGk5B9j2qPdkAUwH5XkA/Wo2kI+XdwO9O2sJCSfbvTmjC9s+uKACM9P5+tK2QwYevQ0i4j6AHnvRuI64AzQALnnB3gjGSOlPVVIx+VRksrcjGDzUittfK4I9KoQ/bubAODTFXqDijcB0G71o2n1znpjrQAfKqgDkdCtP34+UDj+VMRj0K+1DMd3XDDtUgOZvQ8Uu4YAIphBXkUoyVGeOaAJWY8KelNPJzkgdaSPPG7rQw+X7ufamAm7K46kUvQ+lMXKZPQEcil5z0xTAf5e7OePxppJj+mMZFKeF3E4HpRtB5zyakBy8A85HY+lIcKRuJ/mDTg3A6dOcUm7G0Z47CgQI2cDO2jaevbvS888DFN+Zm44/wqhigfMTkZ9aNpViAccfnSKA2cjPenhdygH8OKAGbj3/wp6sUPJO3tuFBH3lPekk3ldpGMcDPSgBWXdkscnpS44680kfzDPf0zTWXdnGaViWOLEdD+HrRny22nLE0uV2rj7+M+lIzHoQODSAfuUqADim/xbgcjocnNBXJ6YpCp6Z478dqBBnGOCR602RTtIyp5zTx8qgbtw67hQeevXrnHWmMjwRH0z+HSkyWwSQG7gdKkOdpJFJt3Dgc+9FxByD16DnBpVYM3LYzwAKMFF9T1yO9OOGwe9MBrBQpB4x70qsFAJOMdqZJ80e3oD+dLGisoDc+gNADuvJpV5HOPU0ZUKVYfMTTNp35pgD/ADMBuYNn86cMcYbBH5VG+VdQFyOvWlUg5x+dAErPzkknjvTVwFxyMd6VdoXBBz7VHtPc/KPz9qAHqT/ex+NO465+b0quXK8gAj6U/cD8yndx60APKKwOeD79qZ0zkhgadw2DjA+lMYbD8lIBx7AdaCxRsswpi7yxClQM8g9aVlV8vk56YpgIhVsBchPcd6XzV3AMegoA5yB9aNq7sn5c9KAHfKV4OeKbu6jdwDTG3gdSc0jKdoPb27UAP5aMMT7U9Qu0ZzUa/u/939KM7SMcfXkUgHeZtPHT+8KRZCV4bJY85pPNGCcfN3GKQfdO0c9R060yRVG1sevWpGxkE9KYud24LlR+dEis2Qx5z9aCSXlu+V7UgUkgFhn1pn8OV6f3acrb8nbg9zQMlWQJj5uffoaerlt2cioG4YbcZPQ07PzEHf8AX1oFYfg7sEhhjr3okw20D5j3NNkkSP77YU8bqRmCMSORntQMcxGDuJx0qJm7A5Ddu1SSNwOPfOaj3DJ4zxkcikBMzeZ/ESP5U3P+114xUayAtx8pPUY6077z9NvoelMAPUck445p33Sy4yT29TR/eJVcH2xQ2VwV+8vcUAhvGVySOc0pKrtdQp7A4yRUe4sy46981IivlgAAMZzxii4hu5kYHPp0oX5sle3UH370fxHPPuaYY9yk/wAXZqQD/L5zuBHfH9Kcu2HAGeehNMU+Xx3pWOEzsJbvTGLvHmZPT60kmG53c9M03aOMgkfX+dLsPQigBFZRzknsfWlVTtzkbugNIdysCOOxxTuT3AGe4xigBxUoR+VRSSFcKMk9cHmn/NJyPlx1zUW1i4J9etIRKpPDq2DnHoRR99iS2e/XrSbT1AHT86BsXcRw3Xp0qrCHDbkZb/ZzRt+ZhuGAcdOcUgXtnIPJNRh8ZVgMD7rZpAS+We5yDyD6Ux8J1Jx2pwZgnAU9+aQMSDxgHrQmAIyhucFjxz0NI27puJA7Ubtyg8AduKXPNUAq4jTk4o53YGV9xSEnAzz6UJvAJAGRQAhZpGYNwT/Ee9Iq4zuYrtHp1qX5mjOUK+2elNXPB6D6e9IBykMOC35UpAyBnn1pvzYYnHA4NAcAZOOeCP60hDix+6DtOc5FHO0457U1SVHC8UvHfr164oAXA/uj86KZuX1/z+dFAzM3fKecDtzTFYhuuRT3HI9M01cdc1B0od6U5RkAdTjmnbgPvDrTdw+vcUDuHK8c/Sm8yAHA9M0rfdJxyB3pm8jpnPegkdt5yvXofSkwe1OPvkn3pHUZoKE/hBbPpTjg4HUenpTR94dM4yacflxjg+tAzkb9A3xcsuOBpz4+pYV1zcMc5HauRuAH+K0JzhhYfzOf6V1hG7Jx3qUXLoP3ZXjg/WmqG6kcN2xQBgn9KTuetUZk3Kgc8dMU0KVBK55PcUxdxbvnpj1pxz06e1Ah20LyTkHpS8buABmmI25hnp9KcvHHX0qhAzcerU5SvkjI3e3eo2BVs+3UU5cNk96ADIbt+XaljYHgj6ZqPy87lzTtrbie1AEjjb8ynr6U0OzcdB/WkXPTcef0pcLnryakeg75WU7qFO3jBwehpjxuwIXpj1oyfTnpQIkbtk5prOG4GDnmkDZXB4Apu6KORE3fvG6cHbQA7eV4IyM4NO3DjB2ntzTWi3MAWUc888UxVH3T2PTqKYyZcsfmPOfWmMdq9M+opduQPmyPWjHy/KMmkFh+3PBPFM+6x6fjTl6en1pRHwR2oBi+SCchiPpSKxDe+eBml5UEc7vT3qNm4weD9KYiR28s4PUc0NzghsjvUCq7ffPQY4qTy17Ej2JpgSZ+bqeP4aRW8xieVoVdvXJOaXap5wQTUgKrE7gR9Dmnc7ufzpqx/KNxz709VAXqc0AK6jsQT/Omr1B4P1p3PQfp1pm0tu5oAGI3njHf2peTjnj+VRup3c5x9KeIySfmycUwJHb5RuHHtQM9M81GoLY9KBlWPORnvSAkCkcdvelLcYPP4009skUigN7Ht7UAA+8Ox9c0/eFXJYZ7801vvfNzjqBSNjaB2oAUtxkc5pThsZyfbNMwJAQeMdKXcAxA4bFADt3ZThu3tRn396ZtbBPT6U9QioCThs8UCGE72GB+lSrnnk4HP0pgxyAM57ntR83rn0p2YEmT3zjtxSFm289z1qLay5wcn0p7E8ZPU0g0HBefvY9qFJ2nFL90ZODQzFmO7rn8KCQ425HFLuCqoPBPTd3prAr05pFjVuSzDnNNDHNg47H3FNVQGO0n8qf5XTcd3PBoK7WGR9SBxTAjzjr16A0rtjoDnOKGGeVJI9KZ5nzDGRigRLtOCcZP6Gmq3PUjnGKb8xDBgFHbHegwhz1Kt29KACRvmwD83Tin/dA7HoeKiZXTGOh9KY0Jd96ytgHoTigCw3Hb8hTFX5sZ6enWl3bWOD/n3pOWABOCD+dAAH2tk5P0pGI3NtHHWmmIxk4bFJjacckGmIFyOeck8ChhhAAfoRRtbarZwe3NIYzuG1toxT0EJHEfvF+Aen9anyeCcHPBquVOV5+oNIwIbG4rg8GkA9lKrwTsHHy85pu0dM5BFPMjN1IHHOBimqp9sdqAHrjaB+VSbSuTn6ioNvzcN2pdrbev1pDQp5JANK0hBxjI6ZzUao3OGpMnaSTxQBJg7gc/jSt83IwCKj80Mhw+SP4aarFmIP6imIlXO4kHbxzz1pQeCCQB+NNG7kbsn3oj+8eeuAOKQEgXbuwdw9qVfu4H44NJ904z16ijlMEDjuf8KAHbfZiO47Uq4/hII64zUT84Oeex6U5M8Y6euKYEq7SSCMg8gDp1obCk9zjNRhi2Cv6im7WDA9ieaBD/ADGZQGH4dqCAuCnTPINRtGZGX5iPbNEiFc4Jz+FAtRzffXDZH0xinL25qPaPvYz68UsLblO05APzA9qBk23zFPIXjOOxprSFV/veoX+dIQeCWGD0weaTnrjjoOaQD1ddoKg567u9N7nk4I59etMb73B96TZ23HFMBzKVct82D78U7cDxg8etREFlPIK56ZpQrqTnDD1zQMl2hcnOP1oVgzYxnimMpX5iP61H3yD79KQEyrhSCSTTdpGDuJz/AA03edpycjPXvSbTwCRyf71AiULu6E+uD2oXnAJz2Bx/OolVuhbGPbrS8g5JH+73oES7Qf4iCDnHUGmt8wHOfX0NIzdz9KQswXbgMTyTTAVP3ecdDThhm3A9vWodnzcHBPenFSu3C8dCCaBEjKM8nmowu4EKNuT2/nSOrNwDgdaORxkg0AO43D5izemaVWPQ8Z461EzNyeQc96cqhm5O0HigBZN3UdenSnRydA33utMbLEAHI701k39CcjpQBMWw2GB+valUlu/tk81D827Lt36UHI5VqALPnE7vpjimFuRnioNsnlttYZ77hUkfmDHmYY/nTAXnIxyMevNSKeCGOPeo2zwFbH8qQsehP4YoAmXDZGccYpi4VsDkDrTV3eo/LmnZKtknjvxSAk3f7I/OiofP/wBr+f8AhRQBn8sRgmnbfm68+1KFHGc4xTSDuIHIFQdAp6470cAdKbyRn0p33lAH50AI2OPm/wA+lMfCNt/GlOMbajxu4PJFAEisCwYH60Fs98LnNIvy7RknNJu+Xpk0FC4BO4EYx0p6BeO/NR7sY6D3pq/KwOe/SgDmlVpPitOQ2VisEx/30c/0rqtxViep9a5Kybzvilq2DsZLSLA+ua6s8McHvUx2NJdCRcMRj86B6EYqNW2kjtnvTmO1sgZ9weKogPMMeWAye1KG3NnGB60xsfKMcduaeGG72IoAcMk8/U/Shc9zj8aTdgZ6UK3fOcjnHagQpx2P0NKrLux909x2pFy2QSM9ce1OAHJI57UEi4/28kdM0fe69O1N3fgPrSncRyTjtSHYVW+bKYOODQwLcjoO2aZ8ysO/aljmPClfcUxBukZfmyCD8pFEffPB96SRmz8vyk9fenchev1oAXcd2GX3pjKN2ce+KVhu4OT2oP3cf0oANpLDv6ilX5mAXrSq2GzkBqUMFbKjkHigBSw4GOadGAvOevrSLlhnHApcgqCCKkoVmxj/APXTPu854/nThhyuRyDxQygZx3596YhMhlJzk0djxkelCr9APY0ct2wexFMQmwMOGAUcCnhCPdTSqo256GlyB0HSncBFfoMd/Sk3MrYxx7U7d82AfpUgxjrtPrSARcDHU+lI3HPU0u3cf5c01k9B+dAC7iCOcUvHOB1pQxZugBo5UYK5XpmgCNufencrjkt74p/GQDj60nA470AN3DnH45peMZHB9qMBsYxihlG0jFACKOx596dtGDj8qapIbJX+tO5yfQ+3SgAKsucnrTeGbgc+9DEdOtO7dOMUAN2hf4sU75WJBGBj8abt3HI575p3IP8A9al1AQgMQAenekbBxkZFO25NBbawGRgUwGqvHHFL1XqQBRj249RRtYAZI9cdBVANf5unJ7U9QcLkc+uKbypxjtmpd+VOQCPX0pMVhyn7vfJ+6BxmkyPXjryOaZuHAHJ/vU4O27tkccelILBvHPGc0A7+nHpwMUxhuJz3ojXCnnI/DimMlDDcedo70NtbODSKfmKnB4+9/SlOFYnGaCdxrN1bOB+lRso3bwu7pUhwwwSD6jApnmFWJwAOgp3Bi/KvGMAdqk3fLwOD/DUS56Hp/OnbirnOD9BUiDc3ygn/AOtTHxuxzn+7/Wn849vT2puNxz+tUgYmCrHI2nv70isvRj9CaeXLcdeO9R7WGTwR60yRZCdzbeffOaRQhIY9fWlVR19+aFyv3mz+FACthlxnD9OtM3E98ilOOCehHpRyuPUc4xwaABlBUDdjPY0m3tk0vLLkdfpScjryaAGlSpyTnjkGjr24p7MzAcUznoSAaBjuNp7/AIcUM449cZ46UhfJxncF4pG9uR9M4oECkNz0x1NPLAKeQw7HNRsjHn1560bm55HTp1oAPLx1O4n06Um1lbHUe1CkbtpPzdcA1J8zYyMehoARcBemDSk7QcAHnPFIfl+98wpWy20KTigAZt3Iz+VAw3UZBoZzHgMvOfSlDBhgntxQAMPlzySOm6lWRehPy0gUqvXOf0pd5QZwG7dKAHqQ6g5x6etNJ2qAeSTxTtw2jBzTWZVwTQIM7RjtTmwV6Ej1psbHgjHtSM3mA5OfUUDBXG35hz3GKaqIrfcwSeSB2pkjfMStSLkITjn37UCsO2bCWVWB9cc4pN2M5b6CmF246g+lO3dD19aAFMiq3IwPftSZRvf0zStHu54FIwEYyCKQwUJuBGR64pWb5Syg7B2ppPQ9/alDbF5/A0wGsx2qR83tTV+XJA684pzsFOAetCqOfmx3xikSDdCAOtC7VzkdKRvXv7UeYytyRt9aYXJM+Z1H4GkGDhWbaPU1GzAtncfm7UvRsYz680Bccz5XHUjih8bR13elC/Nyxz6daZuwpGO/WgCVlCgKBn8OlRs+3AIYn/ZGaARjHIHqKepVV65z7YpCG7uepp6sO/NM4YkE0hba2SR+AoAkKqB7VF90kf0pWkL/AC9+wqLPOGzk9QaYEu4p1BHYUrOr4+XJ9e9JuBA43Dgf/Xo25HHIzQAdfmGfU0o+XnaCvT3FM3Ybr7VKrbeRg/1oATcG5HDZpd+4dCvrSbsMwwCaTfx8xpAP+RQARnnPFOkC87evbjpUe0/LzgU7cw5JpjFXC4Dj8+9HDOTjA68UnmcAYpI3+YE5HoKBCea//PNaKd5f+1+tFAFVlOwg4BHSmcc+/P1pW3cE8+uaXHNQdA0egP60dHI7frTgo3DbwaAOT60ARsO+c+9MIx7fWpuoxj65pkmT16UDGFjuBI6dKaTu6Dn605QS3+BpFUp1OD9KBjivy5HORnHehWVdisp5NIx79D3oT7y+vpQM5PS8/wDC0NecDI+yQjcB35z/AErrWwu4jnHpXJaGpPxF19xyvlIAM+1dWzNu9j6UkVIXaW7cnijG1QFHyij174689KHO7jHFMkI/ve+etLuViB0GeKjP3f5Uozwe1AiZtpxjOR+dNVjk/KT2zSMgGCDn2J6UIw/vcZ7UDHL+XsTzTgflyD+NNXGeuB1z60ISrEN6UCH5LZJzn1NKe+OMe1Ju6jOe/wAtLke5X2J4pCE8wryR25pPvjI6U7G0nnH04piDqx7jimA9cbfmAJxTf4x05o285PWlK7lOcjj8aBEjKNo7EUhUtjjPFMjBCgHnjk5oZ+meD65oAGIyoyVNRxtu3H7pH5U7Py/e5/OneVwST9aBjocqefyNTblZuflHSok7nB6cc0N6gqM1IyQLliegp25d3rUag45OCecU7qoyu360AxjSHdndg45WlVvTrTo9mPn+b0xS7Og+6COtUSG3uRkN19qcrBlzkY6UvPODhv0NJtyo9vegAOMhl6/hSN7mgRjf15707HzHn8KAG4O0cn61IeFyT+JoJ2t/hQM46ZHpQA1eme59OKWNh06Z7fjTOMZ6c5xT1wOeB6VQDjhsjr2oU888n1pd3fHPWk+vIPaoACvzc8CjhVAzj8KNu7ijPrz2pgJwy9Kdk8c81Hgq3Xb/AFqT7y80ANb73HHPWkGeMnv0p3Vh6UvPfrQA3nGR0oXJ7E5p+4Dpn3qNnOeKABQW+8cmnK3Y0xmI5znuaTceASKpAP8AYHml2llyfxpgx06+9K2ePmwaGAojYHJyT7UFduD09aQbgc9Aeoprt82fboKkB7AtyFzjtSsu3vx196YHG3rz604Hb/nrTsIfuG7OcZx+NKyhfu8Z5+tQKzM4JAA7e1S53AYPAOaQhy4xyuT3o3DnjBzxTWbaf5U3k9cg9+OKA2HZVSeDk9yM0m35hinKSq7evPQimBhknH19qYDmU7cL35+lCfdIPOBRnr6Gk428UhA3zOMdOntTTn+DP+7S/dXbSE7eRnH1pgNYHuc+oFR7sHI6VI27b06+hpqqW5AqySRNu0Z5NN/iwDn2pu0ZyM5znFLu6DHt6Uhg2f4uTjpRuKqB1/pRvYc5B9aaG3KR0xQA5ZNxOFwaXjHGRUaZ25B56+lKD1GP1oBEm3b1HFJtXv096arYbB570hYEEAd+c0DAfNwVJ96cF25wcUqnjcOR6YprdSSOKQhZMnGTnHUUkYGeeRRy2CMmjPzcGmIPLTIO0dfvEUZ9uRSr3zx/Wm+cG6k4NADvM+XaR09aRZB35HsKZgKOTgetDMeN3A9RxQA/7xHrjilLZHNM3bec8/nRuyPbtQIk5Xnvimq27ggEfWjf8wGSfQ5psgDKQc5PU0DJNwVSBx7e9Dru6rxmo4VCx8ZPfJ5pPl3HJ69QDQBLuORgZpWyfmXgdgRULLtY7dxUnjmnZfaMMF9eM0AOZi2RjH0pVk6Dt2qNmyxx09qcuStAiRlPU8j2pmwhWx0680m87jk//Xpw7MeVpCsxyttX5hg+1N43HuR60jfMA2eO1N3Egc+9FgGsw3AAilLZYDAyKTy03FiSD6c1IuN3OfrTAG557VEsnzAg96e0fc8+oqJoTvUhmCgUDJC2eAB/KkA3HHOKamWAyKcrDOS2eeKm4rCnGM4yevSmsxGMDrzmnNwD/D65po284HHemMerBuowcdjTWxuB6L3xS5B6AY9hTNpz1+X60xjt3JUMCD6npSNKVH3c59KTYFOckn2pQNvXp60EsduLKCAQe+RSc7ckgFf4fWmGT0bPpTQXz3HegQ/JUHP3frTTzx/EDik3OqksSP8AZoX1x9eaAHHCsvJ/CpQvvtJ65qN1G3dn8jUROcHt/KkBPk888etOVihGQCP5VDuHB+7/AFp28spHQ9+KYEjuVwSPoTQuWYnPB6YqPbx1OPen5K9yOfrmkANluBxSk9Oe/wCVMMm7I5x3NKhB7/higY4YUlQOTzTs7e2D3qveXkdise9t7OdqovLUtrM9xGDIjRc8KeaYiX5vWio93ufyooAY2NvqTR5eOM5xSGT5QMUm/dkEYqDoFbLcgcdvak8zaduPxNH16DtSDngHFACswcbf/rU1vug9x2pynr3NN+9j+tACLj0570hb5io6jnFO25PoKaV289/0oKQdVO48Z70ked4xz3FO3ZXB79jSptWRT09aBnJ+Hm3eO/EnONpVMkewrqFGWPoDXK+FVb/hMvErEEnzQCfpXWc/3qlFS3E25IOATjt/jTl+7xx68U1TuYnGfr0pykc8496okY3ynrx7Uit68ilb2OcUmRnJBAPBoAkYhgQd2TzTFbIIxhqXjb157c01gq/jzQA4E5zyQKcMZHp1yTTPQd6Xd8vXDUrgSZy3JPp0ozx+PAxUZZtpyKFcLwRkZ6d6YEm4tzTlzuBHQdKRWBx2ApGfb7H9KAH58xhluRz7UrDuOvpUXcHIz3FCsNwPb61Ih/Jxnn1pjKGB3DjPHtT2YKxwOOOtNG/nOPai4DV4H6VKrA8BcfSo1bDDjpSMccBuf5UAydcq3y/iKcuGzzhvrUMTN0x2+9UvUdeaAQ4NtXGMil3ZXJwPao9m5s56ehpSgbgjr+FAxyJt/D34p+49umMYpP4QN1Bb58dBj1oEPXB5K4peQRu/PNM+bnBx+HSjPocGi4mSSYzweWGDSLhWOcnj7tM3fN83I9al3BiSDTEHHQdKQv5bYxkHvThjqPl/Gmcg4PPtimASNu5H3sYPaiPcvQcenek5/wA9qeCquOcn9aYCqvBx1680mT+XrSnHOOtIW5J6/wCzSAVs8Hv0zmjqePyxTl2qp6HPrSe4P15oAa2eM5x3pwYL9fU0Mw6ds01skgdqAFPOCBzShdxyq8n0ppY0RvtbqBSAGznA5pNw256fQUrtn+dI5HGePXFNANVlYYAxgU0EbuhI68ik3ELtY7ueD0o8w52sNq9AetUA/cQeBml3HcMnjp701G2+/HNI2Wk+U/pxSAfJ935eh9KaynaM5pcAc5KnPI6ikGGfrkdOKSEOVh0IyPSlVffgdqDjgcE+tDNgevvVAKc8qo7fnQOFHBHpSbvTpQPmznkVIDtx3c9aNu4Z/XmmbgrABqeWz0G324oFuKyg/KVx3NNX73v60773PXvTNoPOaoQmRjGMD2NO2qejcUjYUEAj8OKZ16k578UWAk4HSmMuWOPyFJ/EMHAz0FKQST/hQAok+XB6e9NHHA5Xr0xSGQ7cFcHPWl52+poJEZu3vSblHB/L1p+7cGBIIx3pihRt+b6UxijkccjH5c01mPQ8ikbcsnzcL/sml3LycYYfkaBDlYqowaGQN0445FJkN93AH92lwSMABfc0gGMzcAD2PtTAdy5OT+FObIbBJPuB1pVG4kEhT60x3Gq24gdh0zU276YqLcAPlbJ9cUeY3fn+dIQoyoyzYNJ5pB7015N3Xk+/Wk3DHPT25pgP3/KR27AGk2naC3XoKbxwQeo78UvCqCM+3tSAGU7en4UMuFyWzzypP8qYsjDoc1IvzKCSo565pgSbtpwBgHpge1NU/Meox696X7o67iaZIxLdcgj05oDQlIyc85pNrbuF3L3psbBWGHY/WnsxP17UgG7tqkD/AAxTWVHXjIPrRI23IIB9cU1drYOCD7jFMB8TNGwIPbHXrTzxg8DuajXAbDEtzwfSnl16saQAXVlwv54o4C5HHSo1284zU2Qy980wEVj0IwP89KXOMcfSm7jHweh6UZHJLH2HalcQFwvUGl8wHBZT6AmoXmQLjkn6Uz7SSSBx6GmKxZKkYwBn601vmOcY5zVfzsNgnJpzSAMDk5/vVNxk6suPXmmN8+RkFT2BqKSQSDJfa3X0zR5gA9sU7gO4zwTml2gMvy8/SjtgEHnpnrT16dQPTmpAPmU7hyPpSbgy8qfzpskm2T600uGIzwfegCRDyRjAzxTW5zzQ0pwSuMH26U3cPu89KoY9WZcHFR7mjzx1zjimybmXG4hj0JpNyooypYd8daZI9flVjjPuOtCurMWAx2pu8AYDZU9/T2pqrG3HYcelA7EuC2Nox6ihm5wecUzcIyQGycd6Zn5gO/XmkKxKeFJ/QGl27ufu/WkkjLRlhIF/A0zzB8ozk/3s0xEucrjAbHoO9L2yQCT+H4UzuMH/AOvRuXcAT9M0hki7tvTNIWIVgxxzSKctu3cdKNx3Mc55yD0xQIAxC8bT+NIpYZyufT0pJB83DZOeaeo9unagBDCkkglaMGXAAbPIFSlsDHp2pAwxkDPajcG5/h7ZoAd+AopmPcUUrgMk7DH8qTA9DihSQr49RSN93Pf/APXSOga2BgZ4pjMT7+hpW++PpTY/umqESCTcfu80Nk9Kb3P0/wAKD/qie+aQIRSOePyp+4hRkcf3aYe1J/CabKBs+mcfhinJ80iLnnPenL90fjTE/wBZ+NSUtzkfB7bvEfihuf8Aj4AB/Af4V1nmDoR/hXKeC/8AkPeJR2+0f4V1MfKnP+eamJU9xfM/M8cUrALg89KQ/fP1pI/9ST3zTJ6CcAgE7v50gbccdvWnuMLwMfN/WoMnB/GmCJgw/WkYnAyeaij5QE8nd/SnL/rB9D/OgdyQsPSng7jkc++KikY+cvPcVZkUbV4H5e9KwiJpdoPr7mkyOOeR29aqsx3Nz6/zqdfurTET/d5JBHTnimSNwQPTpmiIllXPPzj+tE3+rf6mpGLt6ZOf5UvIACimWX+qpshxjHrSAnD7cUNk8j7v0pV6n8KI+TzzTAThuQDkU45b2P50o/1L/WlbtSEIzfL0GaPoB9RQwG1OKUcb8ccCi5Q5TnLf15py4YZYZNRx9fzqVB8p4/iouCBeuQOac3zLyD9aXA2ucc5pzfc/CgQiY24P5ijoM9/cUyP7p+lLKxweaBAcNkdTS8bhxTlAZWyM8U0cbiOOaCRWyzcYJ+lSK57jae9BHt6fyqNicD61SAVQNxIPOaOFbJzzx1pZPvClIG/pVIBfMBzx+OaR1555z/jTZSdp571MQPKBxzUgRrwvy9cdKG+VSMY9qYCdpPengncDnnFMBqyHsPy5p0eW4JxUcH+sYds/1qf/AJZn6UAIRuximtwQcc/Tihv9WKjk4jGOKSGx/GeAD3FB+YHPGaeAGjGRmg8q2eaYiFgdxPfpj1pOnb5T2NOX7rfQUKAVGR3/AMapAMbMeQFOM9KVAThgOOxqzH92I98VF/C1IQevp0xTZF2/d4x2NOh6E99v9KkX/VxnvipArtH3UbT9eaXdtwO9TL981HtHp3/rTGNWQbTjBapG3KvC5z2NM2jaeB0/pUq8xjPP/wCql1Exq5ZQDx7UnDMvGefWlb7r/X+lJa/6z/PvTEScLjPpzTGzwRz6GlP3/wATTEY4k56ZxVjY7Abtn1xScKxA/DmolY7UOecVJGBheKCRCfmPYgdRS7sfw85pMncPrQvzMwPIxSARjkYJ/CkZeP7p9+9SD7w+hplx91aEAm5sbeMetK3HBCn2plv/AK41ZHOc8/8A66YFZi2NrDIxxQAOh5qVup+lMTleeeaRLGK/fowFO3B/f2o6NIB0zUSdB+NSx2Jhn+7g02RflyQOOBSyE7l+v9KLn+H6U0KwxH3LgrnjrTxJt6YBzSqB5Wcc0igecwxx/wDWqgIZFDc47444pUVlXGPxp3WEk8nNRoThqkoGZhkFcc+lI0nl/KRz1FL/AMs6cPun6UXJsMaVXICrjHelywwQTt/rUMn3vxqb/lh/wKlcBWGD/dHTNBU7clv/AK9PbmNajg+YMDyPSgCRV9Tg5zRJ90Y+Wo0+YnPOOlI7HzutMXQXJ55B7E0/7vbj3qsxPnMO2amj5QE8ndVCHSTbuQMU0XBZsqMgcfNUTfxj3qaH/Vue9BQqseoAx3NSGRSvqfXuKgh/1pp5+9J9KncBqlgGOSfwqOSZlx8v60SsRjBxyKbJ/q2PfNMCJpVY+n4UZBU4PI79KcwHy8dx/Ko5/wDVH/eNJjJAejFtmevp0pRnBIIPqDUagbU4/wA4qWP/AFg+lIQjYZQByPSpegBbkUsYGDx6f1o9KQDlYt2yB/FTvTHSoB0f8KkTlnzzg8Uxit6E5Halb34I9BVWQ/vF+hq0v+sX6CgQi4OOmeTmk6Z3AYPbOPxpq9T9aW642EcGrASNV/EemaXeIyRjioIWPnAZOOamg+bOeflNIBjYJ6ckdKj3dTjgdaduOBzULk+bjPGaBEyzDofm9KXcX+91FRy/6wDtzQv3fzpMCxndjjv93NLtUggDBxnp1qvbsdw5PSrMYG0HHOTSQlrqQbtjEMOOnuKcrLKpLdB61Hc/6xfwph+/VjLW3y1GDwf7p6U/2LZ5xyKr/wDLMVcb/WIfYUC6kKtvkOGBHSniUqMH5gKH/wCW3+e4qCP7w/3qkRYVjjBOPfFMaTac7tqj1HWkwPJzjn/69Qt2+pp2Ated7iiqNFVYD//Z" } }, "cell_type": "markdown", "id": "f5e76f2b", "metadata": {}, "source": [ "## The System Models\n", "The following two differential equations were derived in lecture. They represent the dynamics associated with a DC Motor with viscous damping and inertia. The equations here should be modified to reflect the dynamics associated with each axis of your term project design.\n", "\n", "$$\n", "\\begin{array}{rl}\n", "\\frac{di_m}{dt} &= \\frac{1}{L} \\left( V_m - R i_m - K_v \\Omega_m \\right) \\\\\n", "\\frac{d\\Omega_m}{dt} &= \\frac{1}{J} \\left( K_t i_m - b \\Omega_m \\right) \\\\\n", "\\frac{d\\theta_m}{dt} &= \\Omega_m\n", "\\end{array}\n", "$$\n", "\n", "The preceding equations can be combined into a single vector equation so that we can solve it using vector based ODE solution techniques.\n", "\n", "$$\n", "\\begin{array}{rl}\n", "\\frac{d}{dt}\n", " \\begin{bmatrix}\n", " i_m \\\\\n", " \\Omega_m \\\\\n", " \\theta_m\n", " \\end{bmatrix}\n", "&=\n", "\\begin{bmatrix}\n", " \\frac{1}{L} \\left( V_m - R i_m - K_v \\Omega_m \\right) \\\\\n", " \\frac{1}{J} \\left( K_t i_m - b \\Omega_m \\right) \\\\\n", " \\Omega_m\n", "\\end{bmatrix} \\\\\n", "\\frac{d}{dt}\n", " \\begin{bmatrix}\n", " i_m \\\\\n", " \\Omega_m \\\\\n", " \\theta_m\n", " \\end{bmatrix}\n", "&=\n", "\\begin{bmatrix}\n", " -\\frac{R}{L} & -\\frac{K_t}{L} & 0 \\\\\n", " \\frac{K_t}{J} & -\\frac{b}{J} & 0 \\\\\n", " 0 & 1 & 0\n", "\\end{bmatrix}\n", " \\begin{bmatrix}\n", " i_m \\\\\n", " \\Omega_m \\\\\n", " \\theta_m\n", " \\end{bmatrix}\n", "+\n", "\\begin{bmatrix}\n", " \\frac{1}{L} \\\\\n", " 0 \\\\\n", " 0 \n", "\\end{bmatrix}\n", " \\begin{bmatrix}\n", " V_m\n", " \\end{bmatrix}\n", "\\end{array}\n", "$$\n", "\n", "The preceding sytem of equations are of the form $\\mathbf{\\dot{x}} = A \\mathbf{x} + B \\mathbf{u}$ where $A$ is the state-to-state coupling matrix, $B$ is the input-to-state coupling matrix, $\\mathbf{x}$ is the state vector, and $\\mathbf{u}$ is the input vector.\n", "\n", "The matrix representation with $A$ and $B$ is actually a special case for linear time-invariant systems; the general expression for nonlinear time-varying systems is $\\mathbf{\\dot{x}} = \\mathbf{f}\\left(t, \\mathbf{x}\\right)$. This system of equations represent the dynamics of the system; that is, the all of the differential equations of motion are wrapped up in one large matrix equation.\n", "\n", "It is most often the case that outputs of interest are not present in the state vector directly. In such instances a second set of equations is utilized to select outputs of interest in the form $\\mathbf{y} = \\mathbf{g}\\left(t, \\mathbf{x}\\right)$. These can also be simplified for linear time-invariant systems using matrices. For LTI systems, the output equations reduce to $\\mathbf{y} = C\\mathbf{x}+D\\mathbf{u}$. The $C$ matrix is referred to as the state-to-output coupling matrix and the $D$ matrix is referred to as the input-to-output coupling matrix. It is common to define $C$ as an identity matrix and $D$ as the zero matrix, resulting in output equations $\\mathbf{y}=\\mathbf{x}$ if all the desired outputs are state variables.\n", "\n", "For the DC motor model, the desired outputs will include all state variables and also the input voltage.\n", "$$\n", "\\begin{array}{rl}\n", "\\begin{bmatrix}\n", " i_m \\\\\n", " \\Omega_m \\\\\n", " \\theta_m \\\\\n", " V_m\n", "\\end{bmatrix}\n", "&=\n", "\\begin{bmatrix}\n", " 1 & 0 & 0 \\\\\n", " 0 & 1 & 0 \\\\\n", " 0 & 0 & 1 \\\\\n", " 0 & 0 & 0 \n", "\\end{bmatrix}\n", " \\begin{bmatrix}\n", " i_m \\\\\n", " \\Omega_m \\\\\n", " \\theta_m\n", " \\end{bmatrix}\n", "+\n", "\\begin{bmatrix}\n", " 0 \\\\\n", " 0 \\\\\n", " 0 \\\\\n", " 1 \n", "\\end{bmatrix}\n", " \\begin{bmatrix}\n", " V_m\n", " \\end{bmatrix}\n", "\\end{array}\n", "$$\n", "\n", "In the code below, there are two different functions defined; each one implements both the state equations, $\\mathbf{\\dot{x}} = A \\mathbf{x} + B \\mathbf{u}$, and the output equations, $\\mathbf{y} = C\\mathbf{x}+D\\mathbf{u}$. The difference between the two functions is that the first implements an open-loop simulation and the second implements a closed loop simulation. That is, the first function uses a constant supply voltage of $V_m = 12\\text{V}$ and the second function uses a simple proportional-derivative feedback law that defines $V_m = k_p \\left( \\theta_{desired} - \\theta_m \\right) + k_d \\left( \\Omega_{desired} - \\Omega_m \\right)$ where $k_p$ is the proportional gain in units of $\\frac{\\text{V}}{\\text{rad}}$, $k_d$ is the derivative gain in units of $\\frac{\\text{V} \\cdot \\text{s}}{\\text{rad}}$, $\\theta_{desired}$ is the desired angle of the motor shaft in $\\text{rad}$, and $\\Omega_{desired}$ is the desired velocity of the motor shaft in $\\frac{\\text{rad}}{\\text{s}}$, set to zero for a step response.\n", "![System%20Model.jpg](attachment:System%20Model.jpg)\n", "\n", "In the code below, the A, B, C, and D matrices are made to reflect the above system model created for our specific turret. This model works for both the yaw and pitch portions of our turret, with the only exception being the mass moment of inertia, viscous damping, and gear reductions. This File is for the pitch axis." ] }, { "cell_type": "code", "execution_count": 2, "id": "6da8e114", "metadata": {}, "outputs": [], "source": [ "# Electromechanical properties\n", "J = .01 # Mass moment of inertia of pitch axis/nerf gun [kg*m^2]\n", "b = 0.001 # Viscous damping due to pitch bearing [N*m*s/rad]\n", "Kt = 0.0263 # Torque Constant [N*m/A]\n", "Kv = Kt # Back-emf Constant [V*s/rad]\n", "R = 9.00 # Terminal Resistance [ohm]\n", "L = 4.72e-3 # Terminal Inductance [H]\n", "N = 100\n", "\n", "# Parameters for closed-loop model\n", "th_des = 2*pi; # Desired motor angle [rad]\n", "om_des = 0; # Desired motor speed [rad/s]\n", "k_p = 5; # Proportional gain [V/rad]\n", "k_d = 0.05; # Derivative gain [V*s/rad]\n", "\n", "#x Array: [i_L, om_J, theta_J]' (J represents base; not motor)\n", "#y Array: [V_m, om_J, theta_J]' \n", "\n", "# State-to-state coupling matrix\n", "A = array([ [-R/L, -Kt*N/L, 0 ],\n", " [ Kt*N/J, -b/J, 0 ],\n", " [ 0, 1, 0 ] ])\n", "\n", "# Input-to-state coupling matrix\n", "B = array([ [1/L],\n", " [ 0 ],\n", " [ 0 ] ])\n", "\n", "# State-to-output coupling matrix\n", "C = array([ [0, 0, 0],\n", " [0, 1, 0],\n", " [0, 0, 1] ])\n", "\n", "# Input-to-output coupling matrix\n", "D = array([ [0],\n", " [0],\n", " [0] ])" ] }, { "cell_type": "code", "execution_count": 3, "id": "e2e1fd83", "metadata": {}, "outputs": [], "source": [ "def system_eqn_OL(t, x):\n", " '''!@brief Implements both state equations and output equations for the open loop system\n", " @param t The value of time for a given simulation step\n", " @param x The value of the state vector for a given simulation step\n", " @return A tuple containing both the derivative of the state vector and the output\n", " vector for a given simulation step\n", " '''\n", " \n", " # Constant input voltage for open-loop\n", " # The voltage must be packed in a 1x1 matrix for the arithmetic below\n", " u = array([ [12] ]);\n", " \n", " # State equations\n", " xd = A@x+B@u;\n", " \n", " # Output Equations\n", " y = C@x+D@u;\n", " \n", " return xd, y" ] }, { "cell_type": "code", "execution_count": 4, "id": "8d56ab4f", "metadata": {}, "outputs": [], "source": [ "def system_eqn_CL(t, x):\n", " '''!@brief Implements both state equations and output equations for the open loop system\n", " @param t The value of time for a given simulation step\n", " @param x The value of the state vector for a given simulation step\n", " @return A tuple containing both the derivative of the state vector and the output\n", " vector for a given simulation step\n", " '''\n", " \n", " # Applied motor voltage is proportional to error in motor angle\n", " V_m = k_p*(th_des - x[2,0]) + k_d*(om_des - x[1,0])\n", " \n", " # For a more realistic simulation, the motor voltage will be saturated at 12V\n", " V_m = min(max(V_m,-12),12)\n", " \n", " # The input must be packed into a 1x1 matrix for the arithmetic below\n", " u = array([ [V_m] ]);\n", " \n", " # State equations\n", " xd = A@x+B@u;\n", " \n", " # Output Equations\n", " y = C@x+D@u;\n", " \n", " return xd, y" ] }, { "cell_type": "markdown", "id": "0dd9f17c", "metadata": {}, "source": [ "## Forward Euler Solver\n", "For this example, as provided a simple solver will be implemented for you. That is, a first-order forward Euler solver is implemented below. It can be used as a template or example that you may extend to use a higher-order integration method, such as the Runge-Kutta method, see below for additional details.\n", "\n", "The details of the solver will not be covered here in great depth, however it is important to understand the integration method in some depth to complete the assignment. The fundamental assumption used in a first-order solver is that over a small window of time the state of the system changes at a constant rate. That is, the derivative of the state vector, $\\dot{\\mathbf{x}}$, is assumed constant over a short window of time, $\\Delta t$. This assumption leads directly to an integration algorithm called Euler's method. There are multiple formulations of Euler's method, and the simplest form is the Forward Euler method. The method predicts future states of the system based on knowledge of the present state and its derivative at a given instant in time. It is called a forward Euler method because it uses information at a given step $n$ to predict the future state at step $n+1$.\n", "\n", "$$\n", "\\begin{array}{rl}\n", "\\frac{\\Delta \\mathbf{x}}{\\Delta t} &= \\mathbf{\\dot{x}}_n \\\\\n", "\\Delta \\mathbf{x} &= \\mathbf{\\dot{x}}_n \\Delta t \\\\\n", "\\mathbf{x}_{n+1} - \\mathbf{x}_{n} &= \\mathbf{\\dot{x}}_n \\Delta t \\\\\n", "\\mathbf{x}_{n+1} &= \\mathbf{x}_{n} + \\mathbf{\\dot{x}}_n \\Delta t\n", "\\end{array}\n", "$$\n", "where, \n", "$$\n", "\\begin{array}{rl}\n", "\\mathbf{\\dot{x}}_n &= \\mathbf{f}(t,\\mathbf{x}_n).\n", "\\end{array}\n", "$$" ] }, { "cell_type": "code", "execution_count": 5, "id": "04d8dfa7", "metadata": {}, "outputs": [], "source": [ "def Euler_solver(fcn, x_0, tspan, tstep):\n", " '''!@brief Implements a first-order forward euler solver\n", " @param fcn A function handle to the function to solve\n", " @param x_0 The initial value of the state vector\n", " @param tspan A span of time over which to solve the system specified as a list\n", " with two elements representing initial and final time values\n", " @param tstep The step size to use for the integration algorithm\n", " @return A tuple containing both an array of time values and an array\n", " of output values\n", " '''\n", " \n", " # Define a column of time values\n", " tout = arange(tspan[0], tspan[1]+tstep, tstep)\n", "\n", " # Preallocate an array of zeros to store state values\n", " xout = zeros([len(tout)+1,len(x_0)])\n", " \n", " # Determine the dimension of the output vector\n", " r = len(fcn(0,x_0)[1])\n", " \n", " # Preallocate an array of zeros to store output values\n", " yout = zeros([len(tout),r])\n", "\n", " # Initialize output array with intial state vector\n", " xout[0][:] = x_0.transpose()\n", "\n", " # Iterate through the algorithm but stop one cycle early because\n", " # the algorithm predicts one cycle into the future\n", " for n in range(len(tout)):\n", " \n", " # Pull out a row from the solution array and transpose to get\n", " # the state vector as a column\n", " x = xout[[n]].transpose()\n", " \n", " # Pull out the present value of time\n", " t = tout[n]\n", " \n", " # Evaluate the function handle at the present time with the\n", " # present value of the state vector to compute the derivative\n", " xd, y = fcn(t, x)\n", " \n", " # Apply the update rule for Euler's method. The derivative value\n", " # must be transposed back to a row here for the dimensions to line up.\n", " xout[n+1] = xout[n] + xd.transpose()*tstep\n", " yout[n] = y.transpose()\n", " \n", " return tout, yout" ] }, { "cell_type": "markdown", "id": "eb1521f2", "metadata": {}, "source": [ "## Runge-Kutta Method (4th-order)\n", "The following algorithm is presented without derivation, but is a marked improvement over Euler's method presented above. The integration technique is fourth-order, instead first-order, so has a much smaller truncation error for a given step size. Using an \"RK\" solver will allow you to use a much more reasonable step size and still get a solution of reasonable accuracy. The algorithm is similar to Euler's method, however it splits the window of time, $\\Delta t$, in half and computes the derivative several times at the start of the time window, in the middle, and at the end. These derivatives are used to find a weighted average which is then used in a standard Euler step.\n", "$$\n", "\\begin{array}{rl}\n", "\\mathbf{x}_{n+1} &= \\mathbf{x}_{n} + \\frac{1}{6} \\left(\\mathbf{k}_1 + 2 \\mathbf{k}_2 + 2 \\mathbf{k}_3 + \\mathbf{k}_4 \\right) \\Delta t\n", "\\end{array}\n", "$$\n", "where,\n", "$$\n", "\\begin{array}{rll}\n", "\\mathbf{k}_1 &= \\mathbf{f}(t, & \\mathbf{x}_n) \\\\\n", "\\mathbf{k}_2 &= \\mathbf{f}(t+\\frac{1}{2}\\Delta t, & \\mathbf{x}_n+\\frac{1}{2} k_1 \\Delta t) \\\\\n", "\\mathbf{k}_3 &= \\mathbf{f}(t+\\frac{1}{2}\\Delta t, & \\mathbf{x}_n+\\frac{1}{2} k_2 \\Delta t) \\\\\n", "\\mathbf{k}_4 &= \\mathbf{f}(t+\\Delta t, & \\mathbf{x}_n+k_3 \\Delta t).\n", "\\end{array}\n", "$$" ] }, { "cell_type": "code", "execution_count": 6, "id": "e7e81d64", "metadata": {}, "outputs": [], "source": [ "def RK4_solver(fcn, x_0, tspan, tstep):\n", " '''!@brief Implements a first-order forward euler solver\n", " @param fcn A function handle to the function to solve\n", " @param x_0 The initial value of the state vector\n", " @param tspan A span of time over which to solve the system specified as a list\n", " with two elements representing initial and final time values\n", " @param tstep The step size to use for the integration algorithm\n", " @return A tuple containing both an array of time values and an array\n", " of output values\n", " '''\n", " #Time Values:\n", " to = arange(tspan[0], tspan[1]+tstep, tstep)\n", " \n", " #Dimension of output vector:\n", " ov = len(fcn(0,x_0)[1])\n", " \n", " #Creating an array of zeros as intermediate for output values:\n", " yo = zeros([len(to),ov])\n", " \n", " #Creating an array of zeros as intermediate for state values:\n", " xo = zeros([len(to)+1,len(x_0)])\n", " \n", " #Initializing state value array with initial state vector:\n", " xo[0][:] = x_0.transpose()\n", " \n", " #Iterating through algroithm until 1 step before finished since algorithm predicts 1 step forward:\n", " for i in range(len(to)):\n", " \n", " #Pull out and transpose a row to get the state vector (column)\n", " x = xo[[i]].transpose()\n", " \n", " #Present time value\n", " t = to[i]\n", " \n", " #Evaluate and find all k values, then the x derivative based on these values\n", " k1, y = fcn(t,x)\n", " k2, y = fcn(t+(1/2)*tstep, x+(1/2)*k1*tstep)\n", " k3, y = fcn(t+(1/2)*tstep, x+(1/2)*k2*tstep)\n", " k4, y = fcn(t+tstep, x+k3*tstep)\n", " x_diff = (1/6)*(k1+2*k2+2*k3+k4)*tstep\n", " \n", " #Update x and y based on the previous calculations. Must be transposed for dimensions to be correct\n", " xo[i+1] = xo[i] + x_diff.transpose()\n", " yo[i] = y.transpose()\n", " \n", " return to, yo" ] }, { "cell_type": "markdown", "id": "3c0b138e", "metadata": {}, "source": [ "## Running the Open-Loop Simulation" ] }, { "cell_type": "code", "execution_count": 7, "id": "f558b8fb", "metadata": {}, "outputs": [], "source": [ "# The following initial conditions will be used by both the open-loop and\n", "# closed-loop simulations\n", "x_0 = array([ [0],\n", " [0],\n", " [0] ])\n", "# Solve the open loop system over a 0.1 second time window with 1 ms steps\n", "t_OL, y_OL = RK4_solver(system_eqn_OL, x_0, [0, 0.1], 1e-6)" ] }, { "cell_type": "markdown", "id": "de62dad5", "metadata": { "tags": [] }, "source": [ "## Plotting the Open-Loop Simulation Results" ] }, { "cell_type": "code", "execution_count": 8, "id": "607eadfd", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+oAAAIfCAYAAADntibMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxOElEQVR4nO3dd3wUdeLG8Wc32fQGSWhJ6L0XERQUlKICVs4uh9jPeqJ3Z+FOBO6w3Knc+dM7FcSuWAELRRBB6SC9l4RQElpIL1vm90dIJNLCZpOZ3Xzer8sryczszLPHF8yTmfmOzTAMQwAAAAAAwBLsZgcAAAAAAAC/oqgDAAAAAGAhFHUAAAAAACyEog4AAAAAgIVQ1AEAAAAAsBCKOgAAAAAAFkJRBwAAAADAQijqAAAAAABYSLDZAczg8Xi0f/9+RUdHy2azmR0HAAAAABDgDMNQbm6uGjVqJLv9zOfMa2VR379/v1JSUsyOAQAAAACoZdLT05WcnHzGbWplUY+OjpZU+n9QTEyMyWnOzOl0as6cORo8eLAcDofZcYCTMEZhdYxRWB1jFFbHGIXV+csYzcnJUUpKSnkfPZNaWdTLLnePiYnxi6IeERGhmJgYSw861F6MUVgdYxRWxxiF1TFGYXX+NkYrc/s1k8kBAAAAAGAhFHUAAAAAACyEog4AAAAAgIVQ1AEAAAAAsBCKOgAAAAAAFkJRBwAAAADAQijqAAAAAABYCEUdAAAAAAALoagDAAAAAGAhFHUAAAAAACyEog4AAAAAgIVQ1AEAAAAAsBCKOgAAAAAAFkJRBwAAAADAQijqAAAAAABYCEUdAAAAAAALCTY7AAAAAADUBMMwZBiSUfa1JMOQPIZxfL1kyChfVrZex5d7jIqvM0pXlC7Xr/s+8VgVj3/8s0483q/bl647cVvjN687eT/lX59i32c6bsX9GSftW6fMePqs5XuoTNbTvGcZp8hYiawul0trj9h0UZFLdR0OBQKKOgAAAGolwygtXi6PRx6P5DYMuT2GPB5DLo8hz/Hvyz+M0nVuw5DL/et6z/HvS9erfDuX59f1v92PYRhye46XweM5PMavRdBzwjLDkDyeE7c58/rT7c/tOc2+T1h2qte63B4dOmzX+wdWSNKps3p+Lb+l25xciPWb8ltebE9Rfj3Gr0X1xP2cWJSPd+QTjnVCUa5wrBMKNwJYkIZnF6pudLjZQXyCog4AAIDT8ngMlbg9KnF75HR55HQbKnEd/97tUYmr9LPLU1pWnR6P3G5DLk/ptm6PIafbU/rZU1r6SpeVfu3ylG5b9nrXb/dVttzjOb7MkPv4vk/cV+n+f92+Qon2/FrAy8q4+3ixRWXZpZwss0NYjs0m2W022Y5/bZNNx/9Xvt52/Dvb8YW/rrP9+v3p1tlOs/0J+5Nsp9h3+ZrT7ke/3fYsWU843Gnfx6mOW/FYtpMzniGrTvOebb85rmEYysrKUpgjSIGCog4AAGAhbo+hYpdbRU6Pil1uFTs9KnZ5zr7M5VGxs7Q0O92l650VyrRxUrkuOV66nb9dXl7ESwttbRVktynIZiv9bLfJbju+zG5XkF0Kstlkt/+6vmxbu82m4KDSzyftw25T0PFyZz9hnzZb6fb2suJXtk35979+bbeVlpSyTKdbX/56+8n7q7juDK+12eTxuLV2zRr16N5NIY7gk9brN2W17GsdL35lxctut51Q5mwVtrWduO1pvraf8LqyomY/Yb3K9vOb5WVZfj3Wb45p10nL7RWK8imy/raBwlROp1PffvutGteNMDuKz1DUAQAAzsLl9qjQ6S79KCn9XFDiVlFJ6edTrnO6VVDiUmGJR0Xl5bqsUB//7PKoyOlWTn6Qnlo1T8Wu0rPJVuYIsskRZJcjyK6QYLtCguwKPr4s2F5aUIPsdjmOfx1st//6uXyZTcFBdjmCSstmsL3s69LPv76mdL0j6NfvK+zvxH0d37bs+KUlWgo+XqrLS/MJpdpeVqKDflOyjxdqlHI6nQra+4uu6NhAjgC5/xewOoo6AAAIGIZhqNjlUV6xS/nFruOf3covKf2+dJn7hK+PLy8v1r+W7cKS0qJd5Cw9u1y9bJLcJy11BNkUGhyk0GC7whyln0OC7Qp1VFxW+hFUuu74NmWFuqxMl33tOF6QQyp8f8J2wbYK25cuO74/u50CCwA1gKIOAAAsocTlUU6RUzmFTuUWuZRTdPxzobPC17lFruPF2/1r0S4r3SXuar1U22aTwh1BiggJUtjxz+GOIIUf/xwREvzr8uPbhDuCFO44VbkOUqjDriB5tHzJzxp4aX9FhYWWbxMSbFcQpRgAaiWKOgAA8AnDMFRQ4lZWQYmOFTh1rMBZ+nWhs7xs5xS6lFvkVE556f7162KXb89ahzuCFBkarKjQ0s+lXwf/uizk12URoSeW7uDTlvHQYLvP7011Op1Kj5Ca1I3gsmIAgCSKOgAAOAWX26OjBSU6ml9WukuUdbx8HztexMsLeWHpuuwCp08uEY8ODVZ0WLBiwh2ln8McFb6OCqtYtsvK969FvPTMNmejAQD+iqIOAEAtYBiGcgpdOpxfrCN5JTqSV6zD+aWfj+SVFvLDecU6cnxZVoHT62OFBNkVF+FQnYgQxUY4VCfCodhwh6LDHMdLd/Dxr49/Dj9exo+XcAo2AKC2o6gDAODHipxuHcot1sHcIh3MKVZmTpEO5hYrM6d02ZG8Eh3JL9bR/BI53ed277bdJsVFhCguwqG48NLiXfZ9nQjHCV+HKDbcoTqRIaoT4VC4I4hHFwEAUAUUdQAALMjp9igzp0gZ2UXlpbvs88ETvs8uPLcz39FhwYqPDFF8VGj554SokF+XRYUo4fi6uIgQzm4DAGACijoAADXM4zF0JL9E+48V6kB2ofYfKyr/vD+7UAeOFelgbpEqO3l5SLBd9aJDVT8mrPxzYnSo6kWHKjE6tLR4R4WobmSIQoODqvfNAQCAKqOoAwDgY26PoYycIqUfLdCeowXae7RAe7MKtf94Gc/ILqrUpGuOIJvqx4SpQUyY6sWEql506ef6ZZ+PF/PYcAeXmgMAEEAo6gAAnCPDMHSswKk9RwuUnlWg9KOFpYU8q0DpRwu071jhWe8Ht9mkxKhQNYoLV6O4MDWMDS/9OjZMDY9/TogKlZ1LzwEAqHUo6gAAnMaxghLtOpyv3YfylXokv/zrPUcLlFfsOuNrg+02JdcJV0rdCCXXiVBynXAlxZWW8YaxYaofE6aQYHsNvRMAAOBPKOoAgFqtoMSl3YfztftwvlIPHy/jxz+OneURZfWiQ5VSN0KN60YopU64ksu+rhuhBjFhTMQGAAC8QlEHANQKuUUupR7I047MPG0/mKttmXnacTBP+44VnvF1DWPD1CwhUk0TItU8IVLNEiLVJL70LHmYg4nZAACA71HUAQABJafIqe2ZedqemavtB/O0LSNH6/cE6diS+ad9Td3IEDWNj1CzhCg1Tywt403jI9U0IUIRIfynEgAA1Cx++gAA+CWPx1B6VoE27c/R5gM52nQgV5sP5JzmDHnpJej1Y0LVql60WtaLUuv60WpVP0qt6kUpLiKkZsMDAACcAUUdAGB5BSUubc3I1eYDudp0IFubD+Rqy4Ec5Ze4T7l9w9gwtawXpVb1otUiIVyHdq7TbVcNUkJMRA0nBwAAOHcUdQCApRQ53dp0IEfr92Zr7d5jWr83WzsO5ck4xdPOQoLtalM/Wu0aRqtdwxi1bxijtg1jFBvuKN/G6XTq24PrKiwDAACwMoo6AMA0TrdHWzNytW5vttbtPaZ1e7O1LTNXLs/JrTwxOlTtGsaoXcNotT9eypslRCo4iEecAQCAwEJRBwDUmIzsIq1Ky9KqtCyt3pOlTQdyVOLynLRdQlSIOifHqXNyrDonx6pjUqzqRYeZkBgAAKDmUdQBANXC6fZoy4FcrUo7qlV7jml1WtYpJ3qLDXeoc3KsOiXFlpfzhrFhstl4BjkAAKidKOoAAJ/IK3ZpZepRrUg9qlVpWVqbnq1CZ8XJ3oLsNrVrGK0ejeuoe5M66poSp8Z1IyjlAAAAJ6CoAwC8klvk1MrULC3dfURLdx3Vhn3Zcv/m3vKYsGD1aFJHPZqUFvMuyXGKDOU/PQAAAGfCT0sAgErJKXJqZepRLdt1VEt3HdH6fdn67ZxvKXXD1atZvM47Xs5bJEbJbudsOQAAwLmgqAMATsnp9mht+jEt3H5YP20/pDXpx04q5k3iI9SrWV31bh6vXs3jlRQXbk5YAACAAEJRBwBIkgzDUNqRAi3afkiLth/Wkp1HlFvsqrBN0/iI46W8rno1i1cjijkAAIDPUdQBoBYrKHHpp+2HtWDbIS3afkjpRyvOyh4X4VDflgm6uFWi+rZKoJgDAADUAIo6ANQye7MKNH/LQc3bfFBLdh2p8BxzR5BNPZrU0UWtEnVRqwR1aBSrIO4xBwAAqFEUdQAIcG6PoTXpWZq3+aDmbzmoLRm5Fdan1A3XgLb1dXHrBPVqFs+s7AAAACbjpzEACEDFLrd+2n5Y323I0PwtB3U0v6R8nd0mndekrga0q6cB7eqpRWIUzzEHAACwEIo6AASIghKXFmw9pO82ZOiHLQeVd8JEcDFhwerfprSY92udqLiIEBOTAgAA4Ewo6gDgx3KKnJq3OVOzNmTox22HVOT89X7zBjFhurxjA13WoYHOa1pHjiC7iUkBAABQWRR1APAzhSVufb85U9PX7NeP2w7K6f714eaN60boio4NdFnHBuqaHCc7E8EBAAD4HYo6APgBp9ujn7Yf1oy1+zV7Y4YKStzl61rWi9IVHRvo8o4N1L5hDPebAwAA+DmKOgBYlMdjaNWeLE1fs0/frDugrAJn+brkOuG6umsjXdUlSW0aRJuYEgAAAL5GUQcAi0k/WqDPVu3V56v3am9WYfnyhKgQDevcSFd1baRuKXGcOQcAAAhQFHUAsIDCErdmbTygT1fu1eKdR8qXR4UG67IODXR110a6sEW8gpkQDgAAIOBR1AHAJIZhaPWeY/psVbq+XntAuSc8Tq1Py3hd3yNFl3VooPCQIBNTAgAAoKZR1AGghmUXOvXF6r36YNke7TiYV748pW64ftc9RcN7JCm5ToSJCQEAAGAmijoA1JD1e7P1/tI0zVi7X4XO0lnbwxx2DenYUNefl6JezeryODUAAABQ1AGgOhWWuDVz7X59sCxNa/dmly9vXT9Kt/Vuomu6JSkmzGFiQgAAAFiN3xb1MWPG6O9//7skafz48RozZozJiQDgV+lHC/TO4lRNW5munKLSe89Dguy6olMD3da7ic5rUodZ2wEAAHBKflnUN2/erBdffNHsGABQgWEYWpWWpck/7dbsjRnyGKXLU+qG69ZeTXR9j2TFR4WaGxIAAACW53dF3TAM3XvvvXI4HOrbt6/mz59vdiQAtZzT7dG36w9oyk+7K1zeflGrBN3Rp5n6tU7k3nMAAABUmt8V9cmTJ2vRokV6/vnntWnTJrPjAKjFsgud+mBZmt5dnKaMnCJJUkiwXdd1S9KoPs3UpkG0yQkBAADgj/yqqB86dEh/+ctf1L59ez366KO6++67zY4EoBY6mFukyT/t1gdL9yjv+LPPE6JC9fsLmujWXo25vB0AAABV4ldF/dFHH9XRo0f1xRdfyOFglmQANWvPkQL9b+FOfbpqr0pcHklSm/rRuvvi5rqyS0OFBgeZnBAAAACBwG+K+rx58/TBBx/otttuU79+/cyOA6AW2ZKRo9cX7NTX6w7IfXyGuO6N43R//5a6tG097j8HAACAT/lFUS8qKtJ9992n2NhY/fOf/zzn1xcXF6u4uLj8+5ycHEmS0+mU0+n0Wc7qUJbP6jlRewXyGN10IEf/mb9T3285VL7sopbxuvfiZjq/aenj1dxul9xuE0PirAJ5jCIwMEZhdYxRWJ2/jNFzyecXRX3ChAnasWOHXn31VdWvX/+cXz9x4kQ9++yzJy2fM2eOIiIifBGx2s2dO9fsCMAZBdIY3V8gzUq3a+1RuyTJJkNd4g0NbORRSlSmjmzO1HebTQ6JcxZIYxSBiTEKq2OMwuqsPkYLCgoqva3li3rZM9O7d++uP/zhD17t48knn9To0aPLv8/JyVFKSooGDx6smJgYX0WtFk6nU3PnztWgQYO4Lx+WFEhjdMfBPL36wy59uzFDhiHZbNLQjg304CUt1CIx0ux48FIgjVEEJsYorI4xCqvzlzFadmV3ZVi+qN9///1yuVx6/fXXZbfbvdpHaGioQkNPnoXZ4XBY+g/yRP6UFbWTP4/RXYfyNGneds1Yu19G6S3oGtq5oR4Z0Eqt6/OItUDhz2MUtQNjFFbHGIXVWX2Mnks2yxf1X375RTabTVddddVJ67KzsyVJzz//vF599VWlpKRoxYoVNR0RgJ86mFOkV+Zt1ycr0ssnibu8QwM9MrCV2jW09tU2AAAACFyWL+qS5Ha7lZmZedr1eXl5ysvLU1hYWA2mAuCvcoucemPhLr21aLcKnaUzwQ1oW0+PDmqtjkmxJqcDAABAbefdteQ16NixYzIM45QfI0eOlCSNHz9ehmEoNTXV3LAALK3E5dHbP+9WvxcX6D/zd6jQ6Va3xnGadu8Fmnx7T0o6AAAALMEvzqgDQFUYhqFv1h/QC7O2as/R0tk2mydE6s+Xt9FlHRrIZuM56AAAALAOijqAgLZhX7aenblRK1KzJEkJUaH648BWurFnihxBlr+oCAAAALUQRR1AQDqcV6x/zt6qT1amyzCkMIdd917cQvdc3FyRofzTBwAAAOvy659Wp06dqqlTp5odA4CFlLg8endJqiZ9v125xS5J0lVdGumJK9qqUVy4yekAAACAs/Prog4AJ/px2yE9O2Ojdh3OlyR1TIrRM1d2UM+mdU1OBgAAAFQeRR2A38vMKdK4mZv0zfoDkqSEqBD9+bK2+l2PZNntTBQHAAAA/0JRB+C33B5D7y5J1b/mbFNesUtBdptuv7Cp/jiwlaLDHGbHAwAAALxCUQfgl9amH9PTX63Xhn05kqSuKXH6+7Ud1aERz0IHAACAf6OoA/ArOUVO/XP2Vr23NE2GIcWEBesvV7TVzT0bc5k7AAAAAgJFHYDf+GHrQT31xXodyC6SJF3XLUlPDmmnxOhQk5MBAAAAvkNRB2B5xwpKNO7rTfpi9T5JUpP4CE28tpMubJlgcjIAAADA9yjqACxt9sYMjflqgw7lFstmk+7s00yPDW6j8JAgs6MBAAAA1YKiDsCSjuQV65kZG/X1utJHrrVIjNQLv+uiHk3qmJwMAAAAqF4UdQCW8/2mTP3l83U6kl+iILtN917cXA8PaKUwB2fRAQAAEPgo6gAsI7/YpQnfbNJHy9MlSW3qR+uf13dRp2QeuQYAAIDag6IOwBJWpWVp9LQ1SjtSIJtNuvui5ho9qDVn0QEAAFDrUNQBmMrp9ujf87br/37YIY8hNYoN079u6KoLWsSbHQ0AAAAwBUUdgGlSD+fr4Y9/0bq92ZKka7o20rNXd1RsuMPkZAAAAIB5KOoATDF9zT49/eUG5RW7FBvu0IRrOurKLo3MjgUAAACYjqIOoEYVlrj17MyN+nhF6YRx5zetq0k3d1XD2HCTkwEAAADWQFEHUGO2Z+bqgQ9Xa1tmnmw26aFLWurhAa0UHGQ3OxoAAABgGRR1ANXOMAx9umqv/jZ9g4qcHiVEhWrSTV3Vp2WC2dEAAAAAy6GoA6hWRU63nv5ygz5fvVeSdFGrBL10Q1clRoeanAwAAACwJoo6gGqTfrRA972/Shv358hukx4b3EZ/6NdCdrvN7GgAAACAZVHUAVSLhdsO6eGPf9GxAqfqRobo1Zu76UIudQcAAADOiqIOwKc8HkOv/7hT/5yzVYYhdUmO1Wu39VBSHLO6AwAAAJVBUQfgM7lFTj02ba3mbMqUJN18foqeubKDwhxBJicDAAAA/AdFHYBPpB0t0H0frNGOg3kKCbJr3NUddNP5jc2OBQAAAPgdijqAKtuebdMz/12mY4VONYgJ039H9FDXlDizYwEAAAB+iaIOoEo+XrFXr222y2M41SUlTm+O6KF6MWFmxwIAAAD8FkUdgFdcbo/+/u1mvf1zqiSbhnZqoH/d0JX70QEAAIAqoqgDOGc5RU49+OEvWrjtkCRpSIpbL1/fSSGUdAAAAKDKKlXUx40b5/MD/+1vf/P5PgFUv33HCjXq7eXalpmnMIddL1zXUcae1bLZbGZHAwAAAAJCpYr62LFjZbPZZBhGlQ524g/yFHXA/2zan6NRU5crM6dY9WNC9dbve6pt/Qh9u8fsZAAAAEDgqPSl7ykpKRo1alSVDzhlyhTt3bu3yvsBULN+2n5Y972/SnnFLrWuH6Wpo85Xo7hwOZ1Os6MBAAAAAaXSRb1x48Z65plnqnzA77//nqIO+JkvVu/Vnz9bJ5fHUO/mdfW/EecpNtxhdiwAAAAgINX4ZHJVvXweQM0xDEOvLdipF2dvlSRd2aWR/nl9Z4UGM2kcAAAAUF0qVdSzsrIUHOybTj979my5XC6f7AtA9XF7DD0zY4PeX1p6A/q9/ZrrL5e1ld3OpHEAAABAdapU+46NjfXZASMjI322LwDVw+n2aPS0tZq5dr9sNmnslR008sKmZscCAAAAagWeow6ggsISt+7/YJV+2HpIjiCbXrqhq67s0sjsWAAAAECtUS1Ffc+ePfroo4+0f/9+de/eXSNGjJDdbq+OQwHwoZwip+6aulLLU48qzGHXf2/rof5t6pkdCwAAAKhVvG7Pr7/+uurWrat///vfFZYvXbpUnTp10lNPPaX//Oc/uuOOO3TZZZfJ4/FUOSyA6nMkr1g3v7FUy1OPKjo0WO/d2YuSDgAAAJjA66I+Y8YM5eTk6LrrrquwfPTo0crNzdWFF16oP/7xj2rYsKHmz5+vjz/+uMphAVSP/ccKdf3/lmjj/hzFR4boo3t6q2fTumbHAgAAAGolr4v6li1blJiYqOTk5PJlu3fv1tKlS9WuXTstXLhQL730kmbNmiXDMPTWW2/5JDAA39qbVaAb31iiXYfy1Sg2TJ/ed4E6JvluAkkAAAAA58bron7o0KEKJV2SfvjhB0nSTTfdJJut9BFOHTt2VMuWLbVjx44qxARQHdKPFujG/y1V+tFCNY2P0Kd/uFDNE6PMjgUAAADUal4XdbfbraKiogrLFi1aJJvNpn79+lVYXrduXR06dMjbQwGoBmlH8nXj/5Zo37FCNU+I1Mf3XKCkuHCzYwEAAAC1ntdFvWnTptqxY4eOHTsmqbS4z5o1S2FhYbrgggsqbHv06FHVrcv9roBVpB7O101vLNX+7CI1T4zUx/f0VoPYMLNjAQAAAFAVivrQoUNVXFysW265RV9//bXuueceZWZmaujQoXI4HOXbZWdna9euXWrSpIlPAgOoml2H8nTjG0t0ILtILetF6eN7eqteDCUdAAAAsAqvn6P+1FNP6auvvtKsWbM0e/ZsGYah2NhYjR8/vsJ2n3/+uTwejy655JIqhwVQNTsP5enmN5bqYG6xWteP0od391ZCVKjZsQAAAACcwOuiXrduXa1evVpvvfWWtm/frpSUFI0aNUoNGzassN2uXbt09dVXa/jw4VUOC8B76UcLdOuby3Qwt1htG0Trg7t6KZ6SDgAAAFhOpYu62+1WUFBQhWUxMTEaPXr0GV83YcIE75IB8JkD2YW6+c2lysgpUqt6UZR0AAAAwMIqfY96YmKibrnlFn3wwQc6evRodWYC4EMHc4t065vLtDer9BFslHQAAADA2ipd1KOjo/Xxxx/r97//verXr6+LL75YL7zwgjZu3Fid+QBUQVZ+iUa8tVy7DucrKS5cH9zNxHEAAACA1VW6qKelpWnNmjUaN26czjvvPC1evFhPPPGEOnfurGbNmunhhx/W7NmzVVJSUp15AVRSdqFTI6Ys09bMXNWLDtWHd/fiOekAAACAHzinx7N17txZTz/9tJYsWaLMzEy9/fbbuu6665SVlaVXX31VQ4YMUXx8vK677jpNmTJFGRkZ1ZUbwBkUlLh0x9QV2rAvR/GRIfrw7l5qEh9pdiwAAAAAleD1rO/x8fEaOXKkRo4cKZfLpYULF2rmzJn69ttv9dVXX2n69Omy2Wzq1q2brrzySg0dOlQ9evTwZXYAp+B0e3T/B6u1Ki1LseEOvXdnL7WsF212LAAAAACVdE5n1E8nODhYl156qV5++WVt3bpVW7du1QsvvKCLLrpI69at09ixY3X++ecrKSlJ99xzjy8OCeAUPB5Df/5snRZsPaQwh11Tbu+p9o1izI4FAAAA4Bz4pKj/VqtWrfTYY4/phx9+0KFDh/TRRx/plltuUUlJiSZPnlwdhwQgaeJ3m/XlL/sUZLfp9Vt7qEeTOmZHAgAAAHCOvL70vbJiYmJ044036sYbb5RhGFq6dGl1HxKold5YuFNvLtotSXpheGdd0raeyYkAAAAAeKNazqifjs1m0wUXXFCThwRqhc9X7dU/vt0iSXpqSFsN75FsciIAAAAA3qrUGfU77rijygey2Wxc9g5Ugx+2HNSfP18nSbrn4ua65+IWJicCAAAAUBWVKupTp0497TqbzVb+tWEYp1xnGAZFHagGG/Zl6/4PVsvtMXRd9yQ9cXlbsyMBAAAAqKJKFfW33377lMu3b9+uF198UTabTdddd53atWun+vXr6+DBg9q8ebO++OILGYahP/3pT2rZsqVPgwO13f5jhbpj6goVOt26qFWCnh/eWXa77ewvBAAAAGBplSrqI0eOPGnZzp079eijj6pv37768MMPVb9+/ZO2yczM1K233qrXXntNK1asqHpaAJKk3CKn7pi6Qgdzi9WmfrT+79bucgTV6JQTAAAAAKqJ1z/ZjxkzRkVFRZo2bdopS7ok1a9fXx9//LEKCws1ZswYr0MC+JXT7dEDH/6iLRm5SowO1ZRRPRUT5jA7FgAAAAAf8bqoz58/Xx06dFB8fPwZt0tISFCHDh00f/58bw8F4DjDMPTMjI1auO2Qwh1BmjKyp5Liws2OBQAAAMCHvC7qubm5Onr0aKW2PXr0qHJycrw9FIDj3li4Sx8u2yObTfr3zd3UKTnW7EgAAAAAfMzrot66dWulpqZq+vTpZ9xu+vTp2r17t9q0aePtoQBImr0xQxO/K31W+l+Htteg9qe+5QQAAACAf/O6qD/44IMyDEM333yznnzySaWlpVVYv2fPHj311FO65ZZbZLPZ9MADD1Q5LFBbbcnI0aOfrJEkjbygie7o28zcQAAAAACqTaVmfT+Vu+66S6tXr9Z///tfvfDCC3rhhRcUFhamhIQEHT58WEVFRZJK76m99957ddddd/ksNFCbHM0v0V3vrFRBiVt9Wybor8Pamx0JAAAAQDWq0vOcXnvtNX311Ve68MILZbPZVFhYqPT0dBUWFspms+nCCy/Ul19+qddff91XeYFaxen26P4PVmlvVqGaxEfo1Vu6KZjHsAEAAAABzesz6mWuuuoqXXXVVcrPz9eOHTuUl5enqKgotWzZUpGRkb7ICNRa42Zu0tJdRxUZEqQ3f3+e4iJCzI4EAAAAoJpVuaiXiYyMVJcuXXy1O6DW+3DZHr23NE02mzTppm5qXT/a7EgAAAAAagDX0AIWtGzXEf1t+gZJ0uOD22ggM7wDAAAAtYZPzqgvXbpUa9eu1dGjR+V0Ok+5jc1m01//+ldfHA4IaBnZRXrgw9VyeQwN69xQ9/dvYXYkAAAAADWoSkV94cKFuvPOO7Vr164zbmcYBkUdqIQSV+nkcYfzStSuYYxe/F0X2Ww2s2MBAAAAqEFeF/VNmzbpiiuukNPp1K233qoff/xRe/fu1VNPPaX09HStXbtWa9euVXh4uP7whz8oOpr7a4Gz+ce3m7V6zzFFhwXrv7d1V3hIkNmRAAAAANQwr4v6c889p6KiIr311lsaNWqULrroIu3du1fjx48v32bOnDm68847NXv2bC1ZssQngYFANX3NPk1dnCpJevmGrmoSz1MTAAAAgNrI68nkFixYoNjYWI0cOfK02wwePFhffPGFNm7cqHHjxnl7KH311Ve699571aNHDzVs2FAhISGKi4vThRdeqEmTJqmkpMTrfQNWsC0zV098vl6S9MAlLZg8DgAAAKjFvC7qBw8eVNOmTWW3l+4iOLj05HxhYWGF7Xr27Kk2bdroiy++8DrkP//5T73xxhvauHGjwsPD1aVLF0VFRWnJkiX64x//qAsvvFDHjh3zev+AmXKLnLrvvVUqdLrVt2WCRg9qY3YkAAAAACbyuqjHxsbK7XaXf1+3bl1JUlpa2knbhoSEaN++fd4eSnfddZd++OEH5ebmateuXVqxYoX27t2rJUuWKDk5WatWrdLTTz/t9f4BsxiGoT9/tk67DuerYWyYJt3UVUF2Jo8DAAAAajOvi3rjxo114MCB8u87deokSZo5c2aF7VJTU7V161bFxMR4eyjdfvvt6t+/vxwOR4XlvXv31ksvvSSp9PJ4wN+8/XOqvtuQIUeQTa/d2l3xUaFmRwIAAABgMq+L+iWXXKIjR44oNTVVknTzzTfLZrPp6aef1pgxY/TNN99oypQpGjx4sJxOp4YMGeKrzBW0bdtWklRQUFAt+weqy/q92Zr43WZJ0tND2qlb4zomJwIAAABgBV7P+j58+HB9+eWX+umnn9S0aVO1adNG48eP19NPP62JEyeWb2cYhpo3b67nnnvOJ4F/q2w2+e7du1fL/oHqkFfs0kMfrZbTbeiyDvU18sKmZkcCAAAAYBFeF/VevXpp+/btFZY9+eST6tu3rz744AOlpqYqPDxcffv21T333OPT56i73W4dOHBAM2bM0BNPPKHIyMgKvxwArMwwDD395XqlHilQUly4XhjeRTYb96UDAAAAKOV1UT+diy66SBdddJGvdytJeuWVV/Too49WWHbNNddo/Pjx6tix42lfV1xcrOLi4vLvc3JyJElOp1NOp7NasvpKWT6r50TlfbZ6n6av2a8gu00vXd9JEQ7//vNljMLqGKOwOsYorI4xCqvzlzF6LvlshmEY3hzk0ksvVVhYmL766iuFhIR4s4tz9umnn2rSpElyOp1KS0tTZmamYmNj9cADD2jcuHEKCgo65evGjh2rZ5999qTlH374oSIiIqo7NlAuo0D61/oglXhsGtbYrUFJXv31AwAAAOBnCgoKdMsttyg7O/usk617XdTDw8PVoUMHrVy50quQvrBs2TLde++9Wrt2re677z69/vrrp9zuVGfUU1JSdPjw4SrNRl8TnE6n5s6dq0GDBp006z38S5HTrd/9b5m2ZubpwhZ19fbve8geAI9iY4zC6hijsDrGKKyOMQqr85cxmpOTo4SEhEoVda8vfW/cuLGKioq8fblP9OrVS99++62aN2+uN954Q0888YSaNGly0nahoaEKDT35sVcOh8PSf5An8qesOLVnv9mirZl5SogK0Ss3dVNoaM1ciVJTGKOwOsYorI4xCqtjjMLqrD5GzyWb149nGz58uLZs2aJt27Z5uwufaNSokbp27SqPx6O1a9eamgU4nflbMvX+0j2SpJdu6Kp60WEmJwIAAABgVV4X9TFjxqhr1666+uqrTS/ILperwmfASg7nFevPn62TJN3Zt5kubp1ociIAAAAAVub1pe8PPvigWrVqpc8++0zdu3dXhw4d1K5dO0VGRp5ye5vNpsmTJ3sd9HRSU1PLf1HQpUsXn+8fqArDMPTE5+t1OK9EbepH60+XtTE7EgAAAACL87qoT506VTabTWVz0W3YsEEbNmw47fbeFvVVq1ZpxowZGjlypJo3b15h3axZs/Too4/K5XJpyJAhatGixTnvH6hOn6xI1/ebMxUSZNfLN3ZVmOPUTyYAAAAAgDJeF/W3337blzlOKzc3V+PGjdO4cePUoEEDJScnq6SkRHv27NGxY8ckST179tQ777xTI3mAyko9nK9xX2+SJD1+WWu1b2TtJwwAAAAAsAavi/rIkSN9meO0unTpokmTJmnevHnauHGjtmzZopKSEsXHx+uCCy7QDTfcoNtuu03BwV6/FcDnXG6P/vjJGhWUuNW7eV3d1bf52V8EAAAAAKpCUa8pderU0cMPP6yHH37Y7ChApf3fDzu1Jv2YosOC9a8bugbE89IBAAAA1AyvZ30HcGrr92br3/O3S5ImXNNRSXHhJicCAAAA4E8qVdTHjRunqVOn+uSAU6dO1bhx43yyL8BqSlwePf7pWrk9hoZ2bqiruyaZHQkAAACAn6lUUR87dqymTJnikwNOnjxZzz77rE/2BVjNf+Zv19bMXMVHhmjcVR3MjgMAAADAD3HpO+AjG/Zl67UFOyVJ46/pqPioUJMTAQAAAPBHlZ5MbuXKlSc9x9wbGRkZVd4HYDW/veR9SKeGZkcCAAAA4KcqXdSLioqUmprqk4PabMyAjcDy6vzt2pLBJe8AAAAAqq5SRX337t3VnQPwWxv2Zev/uOQdAAAAgI9Uqqg3adKkunMAfqnCJe+duOQdAAAAQNUxmRxQBa8v2KktGbmqGxmiZ6/mkncAAAAAVUdRB7y042Ce/u+HHZKksVd1UAKXvAMAAADwAYo64AWPx9BTX6xXidujS9ok6srOXPIOAAAAwDco6oAXpq1M1/LUowp3BGn8NR15kgEAAAAAn6GoA+foYG6R/vHtZknSY4NbK7lOhMmJAAAAAAQSijpwjsbN3KScIpc6JcXq9gubmh0HAAAAQIChqAPnYP6WTH297oCC7DZNvK6TgoP4KwQAAADAt2gZQCXlF7v01682SpLu7NtMHZNiTU4EAAAAIBBR1IFKemnuNu07VqjkOuH648BWZscBAAAAEKCCq/sAl156qSSpW7duevjhh9WkSZPqPiTgc5sP5Gjq4lRJ0oRrOioipNr/6gAAAACopar9jPqCBQu0YMECvfzyy2rVqpVuuukmLV++vLoPC/iMYRj62/QNcnsMXdGxgfq3qWd2JAAAAAABrNpPCz7zzDOSpIyMDC1evFifffaZPv30U7nd7uo+NOATX/6yTytSsxTuCNKYYe3NjgMAAAAgwNVYUS+Tm5urJUuWVPdhAZ/ILnSWPzP9oQEtlRQXbnIiAAAAAIGuxieTi46O1uDBg2v6sIBXXp67TYfzStQ8MVJ39W1udhwAAAAAtYDXRf3YsWM+jAFYz6b9OXp3Saok6dmrOigkmIckAAAAAKh+XjePhg0b6qabbtKsWbNkGIYvMwGm83hKJ5DzGNLQTg11UatEsyMBAAAAqCW8Luoul0vTpk3T0KFDlZycrCeeeEKbN2/2ZTbANF/8sk8r07IUERKkMcPamR0HAAAAQC3idVHft2+fXnzxRXXo0EEHDhzQiy++qI4dO6p3797673//y6Xx8Fs5RU49913pL50eGdBKDWOZQA4AAABAzfG6qNerV0+PPfaY1q1bp9WrV+uhhx5SQkKCli9frgceeKD80vjvvvuOS+PhV/5v/o7yCeRG9WlmdhwAAAAAtYxPZsfq2rWrXnnlFe3fv19fffWVrrnmGhmGoWnTpmnYsGFcGg+/kXo4X1N+3i1J+uvQ9kwgBwAAAKDG+bSFBAUF6aqrrtLnn3+u/fv369lnn1VQUJAyMjLKL42/4IIL9N5778ntdvvy0IBP/P3bzXK6DfVrnahL2tYzOw4AAACAWsjnpws9Ho++/fZb3XffffrHP/4hl8slwzDUqVMnNWzYUMuWLdPtt9+u7t27Kz093deHB7z2847DmrspU0F2m8YMZQI5AAAAAObwWVFfv369Hn/8cSUlJenKK6/UZ599poiICD3wwANatWqV1qxZo/T0dM2cOVM9evTQ+vXr9cgjj/jq8ECVuNwejf96kyRpRO8malU/2uREAAAAAGqr4Kq8+PDhw/rggw/0zjvvaO3atTIMQ3a7XQMHDtQdd9yha6+9ViEhIeXb22w2DR06VAMGDFDTpk31ww8/VPkNAL7w8Yp0bcnIVWy4Q38c2MrsOAAAAABqMa+L+tVXX61Zs2aVX9rerFkz3X777Ro1apSSk5PP+NqwsDC1adNGP/30k7eHB3wmu9Cpl+ZukyQ9OrCV4iJCzvIKAAAAAKg+Xhf1mTNnKjw8XDfccIPuuOMOXXLJJef0+jvuuEOXXnqpt4cHfOY/87braH6JWtaL0q29m5gdBwAAAEAt53VRf/3113XzzTcrJibGq9ePHDnS20MDPpN6OF/vLEmVJP11WHs5gngcGwAAAABzed1K2rVrp927d1dq23Xr1mnhwoXeHgqoNi/O3iqn21D/Nonq1zrR7DgAAAAA4H1R79+/vx5++OFKbfvII49wmTss55c9Wfpm/QHZbNITV7Q1Ow4AAAAASKri49kMw6iWbYHqZhiGJn63RZL0u+7JatvAu1s4AAAAAMDXauSG3CNHjig8PLwmDgVUyrzNB7V891GFBts1enBrs+MAAAAAQLlKTyaXk5OjY8eOVVhWXFys9PT0054tLyws1I8//qgNGzaoS5cuVQoK+IrL7dHzs0rPpt/Rt5kaxvJLJAAAAADWUemi/vLLL2vcuHEVlq1cuVJNmzat1OvvvPPOcwoGVJfPVu3V9oN5iotw6L5+LcyOAwAAAAAVVLqox8XFqXHjxuXf79mzRyEhIWrQoMEpt7fZbAoPD1fz5s1144036rbbbqt6WqCKCkpcemnuNknSQ5e2Umy4w+REAAAAAFBRpYv6I488okceeaT8e7vdrp49e/LYNfiVKT/t1sHcYqXUDddtvRuf/QUAAAAAUMMqXdR/6+2331b9+vV9mQWoVkfyivXfH3dJkh4f3EahwUEmJwIAAACAk3ld1EeOHOnLHEC1+78fdiqv2KVOSbG6snMjs+MAAAAAwCnVyOPZALMdyC7U+8vSJEl/uqyN7HabyYkAAAAA4NQqdUa9efPmkqSWLVtqzpw5FZZVls1m086dO88xHuAb/563QyUuj85vVlcXtUowOw4AAAAAnFalinpqaqokKSws7KRllWWzcQYT5kg7kq9PV6ZLKj2bzlgEAAAAYGWVKuq7d++WJDkcjpOWAVY36fvtcnkM9WudqJ5N65odBwAAAADOqFJFvUmTJpVaBljN9sxcfblmnyTpscGtTU4DAAAAAGfHZHIIaC/N3SbDkC7rUF+dk+PMjgMAAAAAZ+V1Uc/MzNS7776rxYsXn3G7n3/+We+++64OHjzo7aEAr2zYl63vNmTIZpMeG9zG7DgAAAAAUCleF/XXX39do0aN0t69e8+43b59+zRq1Ci98cYb3h4K8Mo/52yVJF3dpZFa1482OQ0AAAAAVI7XRf3rr79WaGiohg8ffsbtrrvuOoWGhmrGjBneHgo4ZytTj2rB1kMKstv0x4Hcmw4AAADAf3hd1FNTU9WsWTMFBQWdcbvg4GA1a9ZMaWlp3h4KOGcvf79NknTDeclqmhBpchoAAAAAqDyvi3pBQYEiIiIqtW14eLhycnK8PRRwTlamHtXPO44o2G7TA5e0NDsOAAAAAJwTr4t6UlKSNm/erMLCwjNuV1hYqC1btqhBgwbeHgo4J5PmbZck/a5HspLrVO6XSQAAAABgFV4X9UsuuUSFhYUaP378GbebMGGCCgoKNGDAAG8PBVTa6j1ZWrT9sII4mw4AAADAT3ld1B9//HE5HA49//zzuueee7R9+/YK67dv3657771Xzz33nEJCQvT4449XOSxwNv8+fjb9um5JSqnL2XQAAAAA/sfrot66dWtNnjxZwcHBmjx5stq2bav4+Hi1aNFC8fHxatu2rd58880K64HqtDb9WPlM7w9eytl0AAAAAP7J66IuSbfeeqt+/vlnXX755QoODlZWVpZ2796trKwsORwODRs2TIsXL9att97qq7zAaZWdTb+ma5KaxDPTOwAAAAD/FFzVHZx33nn65ptvVFRUpB07dignJ0fR0dFq1aqVwsLCfJEROKsN+7I1b8tB2W3ibDoAAAAAv1blol4mLCxMHTt29NXugHNSNtP71V2T1IznpgMAAADwYz4r6oWFhdq5c6dyc3MVHR2tFi1aKDw83Fe7B05r4/5szd2UKZtNzPQOAAAAwO9V6R51SZo9e7b69++v2NhYdenSRX379lWXLl0UGxurSy+9VHPmzPFFTuC0/u+HHZKkKzs3Ust6USanAQAAAICqqVJRHzt2rIYMGaKFCxfK5XLJ4XCoUaNGcjgccrlcWrBgga644gqNHTvWR3GBinYeytN3GzIkcW86AAAAgMDgdVGfNWuWxo0bJ7vdrvvvv19bt25VUVGR0tPTVVRUpK1bt+r+++9XUFCQxo8fr9mzZ/syNyBJ+t+PO2UY0sB29dW6frTZcQAAAACgyrwu6v/+979ls9k0ZcoUvfrqq2rVqlWF9a1atdKrr76qKVOmyDAMTZo0qcphgRMdyC7Ul7/skyTdf0kLk9MAAAAAgG94XdRXrFih5ORkjRgx4ozb3XbbbUpJSdHy5cu9PRRwSm8t2i2n21CvZnXVvXEds+MAAAAAgE94XdRzc3NVv379Sm1bv3595efne3so4CRZ+SX6aPkeSdIf+nM2HQAAAEDg8LqoN2rUSFu2bDlrAc/Pz9fmzZvVsGFDbw8FnOSdJakqKHGrfcMY9WudaHYcAAAAAPAZr4v6ZZddpry8PN19990qKSk55TYlJSW66667VFBQoMsvv9zrkMCJCkpcmro4VVLp2XSbzWZuIAAAAADwoWBvX/jUU0/pk08+0SeffKIFCxbo7rvvVvv27VWvXj0dPHhQmzZt0ptvvqnMzEzFxsbqySef9GVu1GIfLU/XsQKnmsRHaEgnrtQAAAAAEFi8LuopKSn67rvvdMMNNyg9PV0TJkw4aRvDMNS4cWNNmzZNKSkpVQoKSFKJy6O3Fu2SJN17cQsF2TmbDgAAACCweF3UJalXr17asmWLPvzwQ82ZM0fbtm1TXl6eoqKi1Lp1a1122WW6+eabFR4e7qu8qOW+WrNPB7KLVC86VMN7JJkdBwAAAAB8rkpFXZLCw8N155136s477/RFnpMYhqGff/5Z06dP16JFi7RlyxYVFBQoISFBF1xwgR588EFdcskl1XJsWIvHY+h/P+6UJN3Zt5lCg4NMTgQAAAAAvlflol7d5s+fr4EDB0qS7Ha7WrZsqcjISG3fvl1ffPGFvvjiC40ZM0bjx483OSmq24JtB7XzUL6iQ4N1S6/GZscBAAAAgGrh9azvNcUwDLVs2VKvvfaaDh8+rK1bt2r16tU6cuRI+QR1EyZM0Ndff21yUlS3txbtliTddH6KosMcJqcBAAAAgOpRqTPql156aZUPZLPZNG/evHN+3fnnn6/NmzcrOLhi1JCQEP3jH//QmjVr9N133+nNN9/UsGHDqpwT1rRxf7YW7zyiILtNt/dpZnYcAAAAAKg2lSrqCxYsqPKBvH3WdUxMzBnXDxo0SN999522bdvm1f7hH8rOpg/p1FBJcUxOCAAAACBwVaqo//DDD9Wdw2tFRUWSxMzyASwju0gz1+6XJN19EWfTAQAAAAS2ShX1fv36VXcOrxiGoU8//VSS1KdPn9NuV1xcrOLi4vLvc3JyJElOp1NOp7N6Q1ZRWT6r56xOU37aKZfHUM+mddSufmSt/v/CihijsDrGKKyOMQqrY4zC6vxljJ5LPpthGEY1ZqlWb7zxhu69916FhIRo06ZNatGixSm3Gzt2rJ599tmTln/44YeKiIio7piogmK39MyqIBW6bbqrjVud6vrtcAUAAABQixUUFOiWW25Rdnb2WW/x9klRT09P16JFi7Rv3z4VFhbqb3/7W/k6p9MpwzAUEhJS1cNUsHr1avXp00dFRUV64YUX9Kc//em0257qjHpKSooOHz581v+DzOZ0OjV37lwNGjRIDkftm+n8nSVpmvDtVjWNj9Dsh/vIbvdurgNUn9o+RmF9jFFYHWMUVscYhdX5yxjNyclRQkJCpYp6lZ6jfvjwYT3wwAP6/PPPdWLfP7Gojxo1Sh999JGWL1+uHj16VOVw5Xbv3q1hw4apqKhIt9xyix5//PEzbh8aGqrQ0NCTljscDkv/QZ7In7L6ittj6J2leyRJd17UXKGhvv1lD3yrNo5R+BfGKKyOMQqrY4zC6qw+Rs8lm9fPUc/NzVW/fv306aefKikpSbfffruSkpJO2u6uu+6SYRj64osvvD1UBRkZGRo0aJAOHDigoUOHaurUqV7PKA9rm7MxQ+lHC1UnwqHfdU82Ow4AAAAA1Aivi/oLL7ygzZs3a/jw4dqyZYsmT56sJk2anLTdxRdfrPDwcJ/MHH/06FENGjRIO3fuLP8lgZV/Y4Kqeeun0key3da7icJDgkxOAwAAAAA1w+ui/tlnnyk0NFRvvfXWGR+NZrfb1bJlS+3Zs8fbQ0mS8vLyNGTIEG3YsEE9e/bUzJkzeSRbAFu395hWpWXJEWTTiAtO/gUQAAAAAAQqr4t6amqqWrdurdjY2LNuGxERocOHD3t7KBUXF+vqq6/WsmXL1KFDB82aNUvR0dFe7w/WN3VxqiRpWOdGqhcdZm4YAAAAAKhBXhf1sLAw5ebmVmrbAwcOVKrQn4rb7dZNN92k+fPnq0WLFpo7d67q1q3r1b7gHw7nFevrtQckSSMvbGpuGAAAAACoYV7P+t6hQwctW7ZMaWlpp7w3vcyaNWu0Z88eXX755V4dZ9q0afrqq68klV5Gf/31159yu4YNG+rTTz/16hiwlo+W7VGJ26OuKXHqmhJndhwAAAAAqFFeF/XbbrtNixcv1j333KMvv/xSERERJ22TlZWlO++8UzabTb///e+9Os6Jzz/fvn27tm/ffsrtzvTLAvgPp9uj95elSZJu52w6AAAAgFrI60vf7777bl100UWaO3euOnXqpCeeeEKZmZmSpClTpmj06NFq06aNfvnlFw0aNEg33XSTV8e5/fbbZRjGWT9SU1O9fSuwkFkbMpSZU6yEqFAN6dTQ7DgAAAAAUOO8PqMeFBSkr7/+Wvfcc48++eQTvfjiizIMQ1JpiS/7+oYbbtDkyZN9kxYB753jk8jd2quxQoK9/j0SAAAAAPitShf1zz//XFdeeaVCQkLKl0VHR+ujjz7SU089pS+//FLr169Xdna2oqKi1L59e1177bXq0aNHtQRH4NmwL1sr07IUbLfp1l6NzY4DAAAAAKaodFG//vrrVadOHV1//fW67bbb1Ldv3/J1nTp1UqdOnaolIGqPskeyDe3cUPVieCQbAAAAgNqp0tcW161bV1lZWXrzzTfVr18/NW/eXM8888xpJ3cDzsWRvGLNWLtfEo9kAwAAAFC7VbqoZ2RkaPr06Ro+fLhCQ0OVmpqqCRMmqG3bturdu7dee+01HTlypDqzIoB9vCJdJS6POifHqhuPZAMAAABQi1W6qAcHB+vKK6/UtGnTlJmZqbfeekv9+vWTzWbT8uXL9dBDD6lRo0a65ppr9Pnnn6ukpKQ6cyOAuNwevb/010ey2Ww2kxMBAAAAgHm8mlY7Ojpad9xxh+bPn689e/boueeeU8eOHeV0OjVjxgzdcMMNql+/vu69914tWrTI15kRYOZvOagD2UWqGxmioZ15JBsAAACA2q3Kz79q1KiR/vznP2vt2rVat26dHn/8cSUlJSk7O1tvvvmm+vfvr2bNmumvf/2rL/IiAL2/bI8k6frzkhUaHGRyGgAAAAAwl08fVN2xY0e98MILSktL07x58zRq1CiFhoYqLS1N//jHP3x5KASIPUcKtHDbIUnSrec3MTkNAAAAAJjPp0W9zMGDB7Vu3TqtW7dOxcXF1XEIBIgPl5eeTb+4daIax0eYnAYAAAAAzFfp56ifTX5+vr788ku9//77mj9/vtxutwzDkMPh0JAhQzRixAhfHQoBotjl1qcr0yVJt/ZqbHIaAAAAALCGKhV1j8ej2bNn6/3339eMGTNUUFAgwzAkSb1799aIESN04403qm7duj4Ji8Aye2OmjuSXqH5MqAa0rWd2HAAAAACwBK+K+vLly/X+++/rk08+0eHDh8vLebNmzXTbbbdpxIgRatmypU+DIvCUPZLtpp6NFRxULXdhAAAAAIDfqXRR37lzp95//3198MEH2rlzpyTJMAzFxcXphhtu0IgRI9SnT59qC4rAsj0zV8t3H1WQ3aabz+eydwAAAAAoU+mi3rp1a0kqv+/8iiuu0IgRI3TllVcqJCSk2gIiMH1w/JFsA9rWU4PYMJPTAAAAAIB1VLqoG4ahXr16acSIEbrpppu47xxeKyxx6/PVeyVJt/bmkWwAAAAAcKJKF/WtW7eqVatW1ZkFtcTMtfuVW+RS47oRuqhlgtlxAAAAAMBSKj2DFyUdvvLBstJJ5G7p1Vh2u83kNAAAAABgLUy1jRq1cX+21u7NliPIpt/1SDY7DgAAAABYDkUdNWrainRJ0uD2DZQQFWpyGgAAAACwHoo6akyR062v1uyXJN3QM8XkNAAAAABgTRR11JjZGzOUXehUUly4+jKJHAAAAACcEkUdNeaT45e9/65HsoKYRA4AAAAATqnSj2f7rYULF0qSLrjgAjkcDp8FQmDac6RAi3cekc0mXX8ek8gBAAAAwOl4XdT79++vxo0bKzU11YdxEKg+XVV6Nr1vywQl14kwOQ0AAAAAWJfXl77Hx8erQYMGvsyCAOX2GPp05V5J0o1MIgcAAAAAZ+R1UT/vvPO0Y8cOeTweX+ZBAFq47ZAycopUJ8KhQe3rmx0HAAAAACzN66L+5z//WceOHdPEiRN9mQcBqGwSuWu7JSs0OMjkNAAAAABgbV7fo96iRQtNmDBBf/vb37Ry5UqNGDFC7dq1U2Rk5Glf07hxY28PBz91KLdY32/OlMRl7wAAAABQGV4X9aZNm8pms8kwDM2YMUMzZsw44/Y2m00ul8vbw8FPffnLXrk8hrqmxKlNg2iz4wAAAACA5Xld1Bs3biybjWdh4/QMwyi/7J2z6QAAAABQOV4XdR7LhrP5Jf2Ydh7KV7gjSMM6NzQ7DgAAAAD4Ba8nkwPO5vNVpY9ku6JjA0WHOUxOAwAAAAD+gaKOalHkdGvm2v2SpOE9kk1OAwAAAAD+w+tL38sUFxfro48+0pw5c7Rt2zbl5uYqOjparVu31mWXXaabbrpJoaGhvsgKPzJ/y0HlFLnUMDZMvZvHmx0HAAAAAPxGlYr66tWrdf311ys1NVWGYZy07pNPPtH48eM1bdo0de/evUpB4V/KLnu/tluSguxMOggAAAAAleV1Ud+7d68GDRqkrKwsJSQk6O6771aHDh1Uv359ZWZmauPGjXrrrbe0a9cuXXbZZVqzZo2SkpJ8mR0WdSi3WAu2HZLEZe8AAAAAcK68LuoTJ05UVlaWrrvuOr333nsKDw8/aZu//vWvGjFihD7//HNNnDhRr776apXCwj9MX7NP7uPPTm+RGGV2HAAAAADwK15PJvfdd98pMjJSU6dOPWVJl6SwsDC9/fbbioyM1Lfffut1SPiXz1fvkyQN784VFAAAAABwrrwu6vv371e7du0UFXXmM6ZRUVFq166dDhw44O2h4Ec27c/R5gM5Cgmy68oujcyOAwAAAAB+x+uiHh0drczMzEptm5mZqcjISG8PBT/yxerSSeQGtKunuIgQk9MAAAAAgP/xuqj36NFDe/fu1ccff3zG7T766COlp6frvPPO8/ZQ8BMut0dfrSl9dvp13ZlEDgAAAAC84XVRf+ihh2QYhkaOHKnHHntMu3fvrrB+9+7dGj16tEaNGiWbzaaHH364ymFhbQu3H9LhvGLFR4aof5tEs+MAAAAAgF/yuqgPHTpUf/nLX+R0OvXKK6+oZcuWioiIUJMmTRQREaGWLVtq0qRJKikp0RNPPKEhQ4b4MjcsqGwSuau6NpIjyOuhBQAAAAC1WpXa1MSJEzVjxgxdcMEFstlsKioqUnp6uoqKimSz2dSnTx/NnDlTf//7332VFxaVXejU3E2lcxYM57J3AAAAAPCa189RLzNs2DANGzZM+fn52rFjh/Ly8hQVFaWWLVsygVwtMntDhkpcHrWqF6UOjWLMjgMAAAAAfqvKRb1MZGSkunTp4qvdwc98tab0svdruiXJZrOZnAYAAAAA/JfXl74HBQWpX79+ldr2kksuUXCwz34nAIvJzCnSkl1HJElX8ex0AAAAAKgSr4u6YRgyDOOctkdgmrl2vwxD6tGkjlLqRpgdBwAAAAD8Wo1MzZ2fny+Hw1ETh4IJph9/dvrVXTmbDgAAAABVVe1FfevWrdqwYYOSkpKq+1Awwc5DeVq/L1tBdpuGdmpodhwAAAAA8HuVvnF80qRJmjRpUoVlK1euVPPmzU/7msLCQh08eFCSdPXVV3sZEVY24/jZ9ItaJSg+KtTkNAAAAADg/ypd1I8dO6bU1NTy78uem37islOJjo7W9ddfrwkTJnibERZlGIZmrOWydwAAAADwpUoX9T/+8Y+6/fbbJZUWtObNm6tnz56aNm3aKbe32WwKDw9XYmKiT4LCetbtzdbuw/kKc9g1uH0Ds+MAAAAAQECodFGPjY1VbGxs+fcjR45UmzZt1KRJk2oJBusrm0RuUPsGigzl8XsAAAAA4Atet6u3337blzngZ9weQzPXHb/snWenAwAAAIDP+OQ0aH5+vn7++Wdt27ZNubm5io6OVuvWrdWnTx9FRkb64hCwmCU7j+hQbrHiIhy6uDW3NwAAAACAr1SpqJeUlOiZZ57R//3f/yk/P/+k9ZGRkXrooYf0zDPPKCQkpCqHgsVMX7NPkjSkU0OFBFf7U/4AAAAAoNbwuqi73W5dddVVmjt3rgzDUHJystq2bav69esrMzNTW7Zs0d69e/Xcc89p1apV+uabbxQUFOTL7DBJkdOtWRsyJHHZOwAAAAD4mtenQv/3v/9pzpw5qlevnqZNm6a0tDTNmTNH7733nubMmaO0tDRNmzZNDRo00Ny5c/XGG2/4MjdMtHDbIeUWu9QwNkw9m9Y1Ow4AAAAABBSvi/q7774rm82mb775Rr/73e9ks9kqrLfZbPrd736nmTNnyjAMvfPOO1UOC2v4et0BSaWXvdvttrNsDQAAAAA4F14X9c2bN6tdu3bq3r37Gbfr3r272rdvr02bNnl7KFhIkdOt7zdnSpKGdm5ochoAAAAACDxeF3W32y2Hw1GpbR0Ohzwej7eHgoUs2HpQBSVuJcWFq1tKnNlxAAAAACDgeF3UW7RooQ0bNig1NfWM2+3evVsbNmxQixYtvD0ULKTssvehnRuedLsDAAAAAKDqvC7q119/vdxut66++mqtW7fulNusXbtW11xzjTwej2644QavQ8IaCkvcmrf5oCRpaCcuewcAAACA6uD149lGjx6tadOmaf369erWrZv69u2r9u3bq169ejp48KA2bdqkn376SYZhqHPnzho9erQvc8MEP2w9qEKnW8l1wtU5OdbsOAAAAAAQkLwu6hEREZo/f77uu+8+ffnll1q0aJEWLVokm80mwzAklc78Pnz4cL3++usKDw/3WWiY4xsuewcAAACAaud1UZekhIQEffbZZ9qxY4fmzp2rbdu2KS8vT1FRUWrdurUGDx7MvekBIr/YpXlbSmd7H9apkclpAAAAACBwVamol2nZsqVatmzpi13BouZvOagip0dN4iPUMSnG7DgAAAAAELC8nkwOtUv5Ze+duOwdAAAAAKoTRR1nlVfs0g9bj8/23pnZ3gEAAACgOlX60vegoKAqHchms8nlclVpHzDHvM2ZKnZ51CwhUu0bctk7AAAAAFSnShf1spncvVXV18M8XPYOAAAAADXnnCaTs9lsatOmjUaMGKHrrrtOUVFR1ZULFpFb5NSCbYckcdk7AAAAANSESt+j/vLLL6tHjx7asmWLxowZox49euiJJ57Qxo0b1bBhQyUlJZ31w1u7d+/Wm2++qbvvvltdunRRcHCwbDabJkyY4PU+UTnztxxUicuj5gmRatsg2uw4AAAAABDwKl3UH3nkES1fvlxbtmzRk08+qXr16umDDz7QFVdcoaSkJD322GNavXp1tYScNGmS7rnnHr311ltat26d3G53tRwHJ5u9MUOSdHnHBlz2DgAAAAA14JxnfW/durUmTJigXbt2aeHChbrzzjtVXFysl19+WT179lSHDh30/PPPKz093WchExISNGzYMI0bN07fffedhg8f7rN94/SKnG79sKX0svfLOzYwOQ0AAAAA1A5Vejxb37599cYbbygjI0OffvqprrzySu3cuVNPPfWUmjVrpgcffNAnIceMGaOZM2fqr3/9qy6//HLuja8hC7cdUqHTraS4cHVKijU7DgAAAADUCj55jnpISIiGDx+ur776SnPnzlVKSoo8Ho+2bdvmi93DJLOOX/Z+WQcuewcAAACAmnJOs76fTmZmpj766CO99957WrNmjQzDUFRUlPr27euL3cMEJS6Pvt+UKYnL3gEAAACgJnld1AsLC/Xll1/qvffe07x58+RyuRQUFKTBgwdrxIgRuvbaaxUeHu7LrKhBS3cdUU6RSwlRIerRpI7ZcQAAAACg1jinom4Yhr7//nu9//77+vLLL5Wfny/DMNStWzeNGDFCN998s+rXr19dWb1WXFys4uLi8u9zcnIkSU6nU06n06xYlVKWr6Zzfrt+vyRpQNt68rhd8jDRPk7DrDEKVBZjFFbHGIXVMUZhdf4yRs8lX6WL+p/+9Cd9+OGHysjIkGEYSklJ0YMPPqgRI0aoXbt2XgWtKRMnTtSzzz570vI5c+YoIiLChETnbu7cuTV2LI8hfbMmSJJNdfLT9O23qTV2bPivmhyjgDcYo7A6xiisjjEKq7P6GC0oKKj0tpUu6v/6179ks9nUpk0b3XbbberXr59sNpuysrK0ePHiSu3jwgsvrHQwX3ryySc1evTo8u9zcnKUkpKiwYMHKyYmxpRMleV0OjV37lwNGjRIDoejRo65Mi1LuUtXKCYsWA/dMFAhwT6ZcxAByowxCpwLxiisjjEKq2OMwur8ZYyWXdldGed8j/rWrVv117/+9VxfJpvNJpfLdc6v84XQ0FCFhoaetNzhcFj6D/JENZl17ubDkqSB7eorMvzk/9+AU/Gnv0+onRijsDrGKKyOMQqrs/oYPZdslS7qjRs35hFdtYBhGJpd9lg2ZnsHAAAAgBpX6aKemppajTFgFRv25WjfsUKFO4J0catEs+MAAAAAQK3DzceoYNbGA5Kk/m0SFR4SZHIaAAAAAKh9KOqoYNaG0sveL+eydwAAAAAwhV8U9Z9//lkJCQnlHx9//LGk0seunbg8PT3d5KT+bcfBXO08lK+QILsubVvP7DgAAAAAUCud86zvZnA6nTpy5MhJywsKCio8i87tdtdkrIAzd9NBSdIFLeIVHWbd2RIBAAAAIJD5RVHv37+/DMMwO0bAm78lU5I0sB1n0wEAAADALH5x6TuqX1Z+iValZUmSLuGydwAAAAAwDUUdkqQftx2Sx5DaNohWcp0Is+MAAAAAQK1FUYckad6W0vvTmUQOAAAAAMxFUYecbo9+3Fpa1AdwfzoAAAAAmIqiDq1Ky1JOkUt1IhzqmlLH7DgAAAAAUKtR1KH5xy97v6RNPQXZbSanAQAAAIDajaIOzdtc+li2S7nsHQAAAABMR1Gv5VIP52vnoXwF2226qFWi2XEAAAAAoNajqNdyZZe992xaV7HhDpPTAAAAAAAo6rVcWVFntncAAAAAsAaKei2WW+TUst1HJPH8dAAAAACwCop6LfbT9sNyug01S4hU88Qos+MAAAAAAERRr9XmHb/snbPpAAAAAGAdFPVayuMx9EPZ/ekUdQAAAACwDIp6LbV27zEdyS9RdGiwzmta1+w4AAAAAIDjKOq1VNls7xe3TlRIMMMAAAAAAKyChlZLzdvM/ekAAAAAYEUU9VroQHahNh3Ikc0m9W+TaHYcAAAAAMAJKOq1UNll791S4hQfFWpyGgAAAADAiSjqtVD5bO/t6pucBAAAAADwWxT1WqbI6dZPOw5L4v50AAAAALAiinots2TnERU5PWoUG6a2DaLNjgMAAAAA+A2Kei0zb0umJOnSdvVks9lMTgMAAAAA+C2Kei1iGIbmH38s24C23J8OAAAAAFZEUa9FtmTkan92kcIcdl3QIt7sOAAAAACAU6Co1yJlj2Xr2zJBYY4gk9MAAAAAAE6Fol6LzNt8/P50LnsHAAAAAMuiqNcSR/KK9Uv6MUk8lg0AAAAArIyiXkss2HpIhiF1aBSjBrFhZscBAAAAAJwGRb2WKLs/fQBn0wEAAADA0ijqtUCJy6OF2w5Jki5tx/3pAAAAAGBlFPVaYGXqUeUWu5QQFaLOSbFmxwEAAAAAnAFFvRaYd/yy90va1JPdbjM5DQAAAADgTCjqtUD5/entuD8dAAAAAKyOoh7gdh3K0+7D+XIE2dS3VaLZcQAAAAAAZ0FRD3BlZ9N7N49XVGiwyWkAAAAAAGdDUQ9w8zaXFvVLeSwbAAAAAPgFinoAyy50akXqUUkUdQAAAADwFxT1ALZo+yG5PIZa1otSk/hIs+MAAAAAACqBoh7A5h+/7H0AZ9MBAAAAwG9Q1AOU22Poh63cnw4AAAAA/oaiHqDWpGcpq8CpmLBg9WhSx+w4AAAAAIBKoqgHqLLZ3vu3qafgIP6YAQAAAMBf0OACVNnz0we047J3AAAAAPAnFPUAtDerQFsycmW3Sf1aJ5odBwAAAABwDijqAeiH42fTz2tSV3ERISanAQAAAACcC4p6AJp3vKhfymXvAAAAAOB3KOoBpqDEpcU7j0ji+ekAAAAA4I8o6gHm5x1HVOLyKKVuuFrWizI7DgAAAADgHFHUA8z8LZmSpAFt68tms5mcBgAAAABwrijqAcQwjPLnp1/KZe8AAAAA4Jco6gFk4/4cHcwtVkRIkHo1r2t2HAAAAACAFyjqAaTsbPpFrRIUGhxkchoAAAAAgDco6gHkxPvTAQAAAAD+iaIeIA7mFGnt3mxJUv82iSanAQAAAAB4i6IeIOZtKb3svUtKnOrFhJmcBgAAAADgLYp6gJi3ufSy94HM9g4AAAAAfo2iHgAKS9xatP2wJGlge+5PBwAAAAB/RlEPAD/vOKxil0dJceFq2yDa7DgAAAAAgCqgqAeA78sue29XTzabzeQ0AAAAAICqoKj7OY/HKJ9IbkA7LnsHAAAAAH9HUfdz6/Zl61BusaJCg9WreV2z4wAAAAAAqoii7ufKZnu/uHWCQoODTE4DAAAAAKgqirqfm7up7P50LnsHAAAAgEBAUfdjqYfztSUjV0F2my5pw/PTAQAAACAQUNT92HcbMiRJFzSPV53IEJPTAAAAAAB8gaLux77bcECSdEWnBiYnAQAAAAD4CkXdT6UfLdC6vdmy26TLOlDUAQAAACBQUNT91Kzjl733ahavhKhQk9MAAAAAAHyFou6nvj1+2fsQLnsHAAAAgIBCUfdDe44U6Jc9x0ove+9IUQcAAACAQEJR90Nf/LJXktSnZYLqRYeZnAYAAAAA4EsUdT9jGIa+WL1PkjS8e7LJaQAAAAAAvkZR9zMr07K052iBIkOCmO0dAAAAAAKQXxX1b7/9VgMHDlTdunUVGRmp7t276z//+Y88Ho/Z0WrMx8vTJUlDOjVUeEiQyWkAAAAAAL7mN0X9ueee09ChQzVv3jzVqVNHLVu21Nq1a/Xwww/r2muvrRVl/XBesWau3S9JurV3E5PTAAAAAACqg18U9SVLluipp56S3W7Xhx9+qJ07d2rt2rVavXq16tevrxkzZuill14yO2a1+2jZHpW4PeqaEqeuKXFmxwEAAAAAVAO/KOoTJkyQYRi66667dPPNN5cv79KlS3lBf+655+R0Os2KWO3yil16e3GqJGlUn6amZgEAAAAAVB/LF/WcnBx9//33kqQ777zzpPXXX3+9YmJidOTIEf3www81Ha/GvL04TUfzS9Q8IVJDOzU0Ow4AAAAAoJpYvqj/8ssvKikpUVhYmLp3737SeofDoZ49e0qSli1bVtPxakRmofS/hbslSaMHt1ZwkOX/2AAAAAAAXrJ849u+fbskqXHjxgoODj7lNs2bN6+wbaA4ml+iWRsz9b/NQSp2edSvdSJn0wEAAAAgwJ26+VpIVlaWJKlOnTqn3aZsXdm2v1VcXKzi4uLy73NyciRJTqfT0ve1f7oiTRNnbZNkU0qdcE28pr1cLpfZsYAKyv4OWfnvEmo3xiisjjEKq2OMwur8ZYyeSz7LF/WioiJJUkhIyGm3CQ0NlSQVFhaecv3EiRP17LPPnrR8zpw5ioiI8EHK6lGUKzUID1LrWEOXJedqxaJ5ZkcCTmvu3LlmRwDOiDEKq2OMwuoYo7A6q4/RgoKCSm9r+aIeFhYmSSopKTntNmVny8PDw0+5/sknn9To0aPLv8/JyVFKSooGDx6smJgYH6b1vbudTs2dO1eDBg2Sw+EwOw5wEidjFBbHGIXVMUZhdYxRWJ2/jNGyK7srw/JF/WyXtZ+47nSXx4eGhpafdT+Rw+Gw9B/kifwpK2onxiisjjEKq2OMwuoYo7A6q4/Rc8lm+cnkWrVqJUnas2fPae/P3rVrV4VtAQAAAADwV5Yv6t26dZPD4VBRUZFWr1590nqn06kVK1ZIknr16lXT8QAAAAAA8CnLF/WYmBgNHDhQkjR58uST1n/66afKyclRfHy8+vfvX8PpAAAAAADwLcsXdUl6+umnZbPZ9NZbb+mjjz4qX7527drySeL+/Oc/n3FmeAAAAAAA/IFfFPU+ffpo/Pjx8ng8uuWWW9SiRQt16dJF3bt3V2ZmpoYOHarHHnvM7JgAAAAAAFSZXxR1qfSs+syZM3XppZfqyJEj2rFjhzp16qRXXnlF06dPV1BQkNkRAQAAAACoMss/nu1Ew4YN07Bhw8yOAQAAAABAtfGbM+oAAAAAANQGFHUAAAAAACyEog4AAAAAgIVQ1AEAAAAAsBCKOgAAAAAAFkJRBwAAAADAQijqAAAAAABYCEUdAAAAAAALoagDAAAAAGAhFHUAAAAAACwk2OwAZjAMQ5KUk5NjcpKzczqdKigoUE5OjhwOh9lxgJMwRmF1jFFYHWMUVscYhdX5yxgt659lffRMamVRz83NlSSlpKSYnAQAAAAAUJvk5uYqNjb2jNvYjMrU+QDj8Xi0f/9+RUdHy2azmR3njHJycpSSkqL09HTFxMSYHQc4CWMUVscYhdUxRmF1jFFYnb+MUcMwlJubq0aNGsluP/Nd6LXyjLrdbldycrLZMc5JTEyMpQcdwBiF1TFGYXWMUVgdYxRW5w9j9Gxn0sswmRwAAAAAABZCUQcAAAAAwEIo6hYXGhqqZ555RqGhoWZHAU6JMQqrY4zC6hijsDrGKKwuEMdorZxMDgAAAAAAq+KMOgAAAAAAFkJRBwAAAADAQijqAAAAAABYCEUdAAAAAAALoaj72LfffquBAweqbt26ioyMVPfu3fWf//xHHo/Hq/0tWbJEV199tRITExUeHq727dtr/PjxKioqOuPrNm/erFtvvVUNGzZUWFiYWrRooccff1zHjh3zKgcCi9njdNu2bZo4caIGDx6sBg0ayOFwqG7durrkkkv09ttve50DgcPsMXoq33//vWw2m2w2mwYOHOhVDgQOK43RuXPnavjw4WrUqJFCQ0PVoEED9e/fXy+++KJXWRAYrDBGS0pKNGnSJPXu3VuxsbFyOBxq2LChrr32Ws2fP9/bt4YA4asxmpGRoXfffVcPPvigzj//fIWGhspms+muu+6q1Ost25sM+MzEiRMNSYYko3nz5kbnzp0Nu91uSDKuuuoqw+12n9P+3n//fSMoKMiQZCQlJRndunUzHA6HIcno2bOnkZ+ff8rXzZ8/3wgPDzckGYmJiUb37t2NiIiI8lwZGRm+eLvwU2aPU5fLVX58SUZycrJx3nnnGfXq1StfNnjwYKOwsNCXbxt+xOwxeiqFhYVGy5Yty3MNGDDA27eHAGCVMerxeIz77ruvwr+nPXv2NJo2bWoEBwcb8fHxvni78ENWGKP5+fnGBRdcUJ6jadOmRvfu3Y24uLjyZc8//7yv3jL8jC/H6Msvv1zhZ8uyjzvvvPOsr7Vyb6Ko+8jixYsNm81m2O1248MPPyxfvmbNGqN+/fqGJOPFF1+s9P52795thIaGGpKMF154wfB4PIZhGEZqaqrRpk0bQ5LxwAMPnPS6nJwcIzEx0ZBkPPzww0ZJSYlhGIZx+PBho0+fPoYkY+jQoVV8t/BXVhinTqfTiIuLM8aMGWPs3LmzwrpPPvmk/B/Lxx57rArvFP7KCmP0VJ5++unyHx4o6rWblcbok08+aUgyOnbsaCxfvrzCuuzsbGPGjBlevEP4O6uM0fHjx5eXn6VLl5YvLykpMcaOHWtIMoKCgozt27dX4d3CH/l6jE6ePNkYNGiQ8fTTTxvTp083HnrooUoVdav3Joq6jwwZMsSQZNxzzz0nrfvggw8MSUZ8fHz5ADib+++/v/zM4m/9/PPPhiTD4XCc9FueF154wZBktGvXznC5XBXWpaWlGcHBwYYkY9WqVefw7hAorDBOPR6PcfTo0dPu87nnnjMkGXXq1Dnn3/jD/1lhjP7Wpk2bjJCQEOOKK64w3n77bYp6LWeVMbp+/XojKCjISExMNDIzM717MwhIVhmjvXv3NiQZ//73v0+5365duxqSjNdee61SORA4fD1Gf+uZZ56pVFG3em+iqPtAdna2ERISYkgyli1bdtL6kpISIyYmxpBkzJ49+6z783g8RsOGDQ1JxieffHLKbdq2bWtIMv73v/9VWF72j+LpLiW6/PLLDUnGk08+WYl3hkBipXF6JqtXry6/ZInbNGoXK45Rj8djXHTRRUZYWJixc+dOinotZ6Uxeu+99xqSjAkTJnj3ZhCQrDRGu3TpYkgyvv7661O+bvjw4Wcs8ghMvh6jp1LZom713sRkcj7wyy+/qKSkRGFhYerevftJ6x0Oh3r27ClJWrZs2Vn3t2fPHh04cECS1KdPn1NuU7b8xP25XC6tWrXqnF+H2sEq4/RsTpyUJjw8vNKvg/+z4hidPHmyFi1apCeffFLNmzev1PtA4LLSGJ05c6YkadiwYVq9erUeeOABDRo0SFdffbX+8Y9/6ODBg5V/YwgYVhqjnTt3liQtXrz4pNcUFxeX/8xalge1g6/HqLf8oTdR1H1g+/btkqTGjRsrODj4lNuU/YBXtm1l9hcaGqpGjRpVen+pqalyOp0V1lclBwKLVcbp2UybNk2S1LFjR8XExFT6dfB/Vhujhw4d0l/+8he1bNlSf/nLX87+BhDwrDJGMzIytH//ftlsNv3www86//zz9dprr+n777/XjBkz9PTTT6tVq1b6/vvvK//mEBCsMkYl6YknnlBUVJRefPFFvfTSS9q3b58KCwu1Zs0aDR8+XKmpqbrtttvUu3fvyr05BARfj1Fv+UNvoqj7QFZWliSpTp06p92mbF3ZtpXZX1xcnGw2W6X3d+LXp8tyLjkQWKwyTs9kw4YNeu211yRJf/7znyv1GgQOq43RRx99VEePHtWrr76q0NDQsx4Pgc8qY7TsDKfNZtNjjz2m888/X6tXr1ZxcbE2btyoQYMGKScnR8OHD1d6enol3hkChVXGqCS1b99eP//8swYNGqTHH39cycnJioiIULdu3bR06VL95z//0TvvvHP2N4WA4usxWtUcZ8pidm+iqPtA2aW6ISEhp92m7Ie8wsLCatvfiZcMn+6155IDgcUq4/R0jh07puHDh6ukpERDhgzRiBEjzvoaBBYrjdF58+bpgw8+0O9+9ztddtllZz0WagerjNH8/HxJksfjUVRUlL755ht169ZNISEhat++vaZPn65GjRopJydHr7zyyllzIHBYZYyW2bNnjzIzM2UYhho1aqSuXbsqKipKR44c0dtvv61169adNQMCi6/HaFVznCmL2b2Jou4DYWFhkqSSkpLTblNcXCypcvfceru/sted6bXnkgOBxSrj9HTbXXPNNdq2bZs6dOig999//6zHR+CxyhgtKirSfffdp6ioKL388stnD45awypj9MT/3v/+978/6WxQeHi47rvvPknSrFmzzpoDgcMqY1SSPvjgA1111VXat2+fFixYoH379umXX37RkSNHNGbMGK1evVoXX3yxdu/efdYcCBy+HqNVzXGmLGb3Joq6D1TmsojKXObx2/0dO3ZMhmFUen8nfn26LOeSA4HFKuP0t1wul2688Ub9+OOPatq0qebMmcP4rKWsMkaff/557dixQ88884ySk5MrFx61glXG6Ilft23b9pSva9eunaTS+zBRe1hljDqdTj322GMyDEOvvPKK+vXrV74uJCRE48eP1+DBg5Wbm6vnnnvurDkQOHw9Rqua40xZzO5NFHUfaNWqlaTSy3tcLtcpt9m1a1eFbSuzv+LiYu3fv7/S+2vatKkcDkeF9VXJgcBilXF6IsMwNGrUKE2fPl0NGzbU999/f9rJahD4rDJGf/nlF0nSCy+8oAYNGlT4eOSRRyRJixYtKl/GPcC1h1XGaNOmTcsvyTzd/Ally91u91lzIHBYZYxu375dmZmZkqQBAwac8nUDBw6UJK1cufKsORA4fD1GveUPvYmi7gPdunWTw+FQUVGRVq9efdJ6p9OpFStWSJJ69ep11v01btxYDRo0kCT9/PPPp9ymbPmJ+wsODi5/zMG5vA61g1XG6YkefPBBvf/++4qPj9fcuXPVokWLSr0XBCarjdFDhw4pMzOzwkdOTo6k0svkypZRhGoPq4zRoKCg8scXne0HzKSkpLPmQOCwyhjNzc09677LztCfeK8wAp+vx6i3/KE3UdR9ICYmpvy3gpMnTz5p/aeffqqcnBzFx8erf//+Z92fzWbTtddee9r9LV68WFu2bJHD4dBVV11VYd11110nSZo6depJPzzu2bOn/FEtw4cPP/sbQ0Cx0jiVpKefflqvvfaaoqOjNWvWLHXo0OEc3xECjVXG6FdffSXDME758fbbb0sqPUNUtqxp06ZevFv4I6uMUUm64YYbJEkfffRR+SOGTlQ2m/all1561hwIHFYZoy1atCifJX7evHmn3HfZz6StW7c+aw4EDl+P0aqwfG8y4BM//fSTYbPZDLvdbnz44Yfly9esWWPUr1/fkGQ8//zzFV7z8ssvG02aNDFuvPHGk/a3a9cuIyQkxJBkvPDCC4bH4zEMwzBSU1ONNm3aGJKMP/zhDye9Ljs720hISDAkGQ8//LBRUlJiGIZhHD582OjTp48hybjiiit8+dbhR6wyTv/1r38Zkozw8HDjxx9/9PG7hD+zyhg9nbffftuQZAwYMMDLdwh/Z5UxWlBQYKSkpJSvLy4uNgzDMFwul/HUU08ZkoyQkBBj48aNvnz78ANWGaOXX365Iclo0KBBhf/WFxcXG2PGjDEkGZKMzz//3FdvHX7C12P0t5555hlDknHnnXeecTur9yaKug9NmDCh/B+d5s2bG507dzbsdrshyRg6dKjhcrkqbF82iPr163fK/b3zzjvlr09KSjK6detmOBwOQ5LRo0cPIy8v75Sv+/77742wsDBDkpGYmGj06NHDiIiIMCQZTZs2NQ4cOODrtw4/YvY43bdvn2Gz2QxJRr169Yw+ffqc9oOxWjuZPUbPhKIOw7DOGF2xYoURExNjSDLq1Klj9OzZ00hMTDQkGUFBQcbUqVN9/dbhJ6wwRlNTU43GjRuX50hKSjK6du1qREdHly+7++67q+Ptww/4cozu2bPHiI+PL/8IDw83JBmhoaEVlv/0008nvdbKvYmi7mMzZ840Lr30UiM2NtaIiIgwunTpYrzyyisnDTbDOPs/ioZhGD///LMxbNgwo27dukZoaKjRpk0bY+zYsUZhYeEZc2zYsMG46aabjHr16hkhISFGs2bNjNGjRxtHjx6t6ltEADBznO7evbv8H+azfezevduH7xr+xCr/lv4WRR1lrDJGU1NTjbvuustITk42HA6HkZiYaFx33XXGsmXLqvoW4eesMEazsrKMZ555xujWrZsRFRVlBAcHG4mJicYVV1zBmXT4bIxW9mfLH3744ZQ5rNqbbIZxmmctAAAAAACAGsdkcgAAAAAAWAhFHQAAAAAAC6GoAwAAAABgIRR1AAAAAAAshKIOAAAAAICFUNQBAAAAALAQijoAAAAAABZCUQcAAAAAwEIo6gAAAAAAWAhFHQAAC+nfv79sNpsWLFhgdhTLGTt2rGw2W4WP1NTUKu0zLi6uwv5uv/12n2QFAKAqgs0OAABAoLHZbOf8mn79+gV8OT927JheeeUVxcXF6Y9//KPX+0lJSVHjxo0lSWFhYVXKdMEFFyg3N1cHDx7U9u3bq7QvAAB8haIOAICP9enT56Rl2dnZ2rBhw2nXd+rUSZLUuHFjtWnTRhEREdUb0gTHjh3Ts88+qyZNmlSpqN9xxx0aO3asTzJ99913kqSpU6dq1KhRPtknAABVRVEHAMDHfvrpp5OWLViwQJdccslp15d59913qy0XAADwD9yjDgAAAACAhVDUAQCwkNNNJnf77bfLZrNp6tSpSktL02233ab69esrKipKF1xwgebOnVu+7fr16zV8+HDVq1dPERERuvjii7V06dLTHtPlcum///2v+vbtq7i4OIWFhalt27YaM2aMcnJyfPK+br/9djVr1kySlJaWdtKkcL6Sn5+vcePGqXPnzoqMjFRYWJhSUlLUv39/Pffcc3I6nT47FgAA1YVL3wEA8CO7d+/Wn/70JxUWFqpt27ZKS0vT0qVLNWTIEM2ePVshISG6/PLL5XA41KJFC+3YsUOLFi3SgAEDtHz5cnXo0KHC/nJycnTllVdq4cKFstvtSklJUXR0tLZt26a///3v+uKLL7RgwQLVq1evSrlbt26t8847TytXrlRoaKjOO++8Ku3vVFwulwYOHKilS5fKbrerVatWio6O1v79+7Vo0SL9+OOPuu+++xQXF+fzYwMA4EucUQcAwI9MnDhRAwcO1IEDB7Ry5UplZmbq/vvvl8vl0ujRozVixAjde++9yszMLF9/5ZVXqqCgQOPGjTtpf/fee68WLlyoAQMGaPv27UpNTdX69euVkZGh6667Tps3b9YDDzxQ5dxPPfWUPv30U0lSgwYN9NNPP1X48IXp06dr6dKl6tKli9LS0rRlyxatWLFC+/btU0ZGhl555RWFhIT45FgAAFQnijoAAH4kISFBkydPVnR0tCTJbrfrH//4h8LCwrR27VrVqVNH//znP8sLaWhoqF588UVJ0qxZsyrsa926dfr444/VpEkTffnll2revHn5ujp16ui9995TSkqKPv/8c6WlpdXQO/Re2ePV7rjjDiUnJ1dYl5iYqEceeSQgZ9MHAAQeijoAAH7k5ptvPqlsxsbGlt//PWrUqJPu+W7Tpo3Cw8OVk5OjI0eOlC//8ssvJUk33HBDefE/UUREhAYOHCjDMLRo0SJfvxWfS0lJkSR98803KigoMDkNAADe4x51AAD8SIsWLU65PDExUZs3bz7j+j179igvL0/x8fGSSiedk0oL++LFi0/5urIz6fv27atq9Gp3zTXXqGnTppozZ44aNWqkyy+/XBdddJH69+9/0r35AABYGUUdAAA/crpLt8vOop9tvWEY5cuys7MlSTt27NCOHTvOeNzCwsJzzlrTIiMjtWjRIv3tb3/TZ599pk8++USffPKJJKl9+/Z6/vnnNWzYMJNTAgBwdlz6DgBALRUVFSVJevPNN2UYxhk/xo4da27YSkpOTtaUKVN09OhRLV26VM8995zOO+88bdq0Sddcc42WLVtmdkQAAM6Kog4AQC3Vvn17SdKGDRtq5Hi+fF762QQHB6tXr176y1/+ohUrVuimm26S2+3WlClTaiwDAADeoqgDAFBLXXvttZKk999/v8Ikc9UlPDxckjmX0ffu3VuStH///ho/NgAA54qiDgBALXXeeefphhtu0JEjRzRo0CD98ssvFda73W4tWLBAt956q4qLiyus69+/v2w22zldEp+YmKjo6GgdPHhQmzdv9sVbqODll1/WK6+8oszMzArL9+zZo7feekuS1L17d58fFwAAX2MyOQAAarHJkycrKytLc+fOVffu3dW4cWM1bNhQBQUF2rFjR/nZ78mTJ1f5WDabTddff72mTJmi7t27q2PHjoqMjJQkLViwoMr7T0tL06RJk/Too4+qadOmqlevnnJycrR9+3a53W517NhRo0ePrvJxAACobhR1AABqsaioKM2aNUsff/yx3n33Xa1atUqrV69WQkKCOnfurP79+2v48OEKCwur8LqMjAxJUteuXc/peJMmTVJ0dLSmT5+utWvXyul0+uqt6L777lOdOnU0f/587dy5U2vWrFGdOnXUs2dP3XrrrbrzzjvLL78HAMDKbMaJz2kBAAA4iyNHjigxMVHNmzfXtm3bZLfXzJ10Y8eO1bPPPqtnnnnG57PQT506VaNGjdLIkSM1depUn+4bAIBzxRl1AABwThYvXizDMPToo4/WWEk/0ZQpU/T9999Lkj777DM1aNDA631dccUVys3N1cGDB30VDwCAKqOoAwCAc7J48WLVqVNHt99+uynHT09PV3p6uiSpqKioSvtasmSJsrOzfRELAACf4dJ3AAAAAAAshMezAQAAAABgIRR1AAAAAAAshKIOAAAAAICFUNQBAAAAALAQijoAAAAAABZCUQcAAAAAwEIo6gAAAAAAWAhFHQAAAAAAC6GoAwAAAABgIRR1AAAAAAAshKIOAAAAAICF/D/k/OGi9i2/IwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Enlarge font size\n", "rc('font', **{'size' : 16})\n", "\n", "pyplot.figure(figsize=(12,6))\n", "pyplot.plot(t_OL, y_OL[:,1])\n", "pyplot.xlabel('Time, t [s]')\n", "pyplot.ylabel('Motor Velocity, [rad/s]')\n", "pyplot.grid()" ] }, { "cell_type": "markdown", "id": "fc5d7ecc", "metadata": {}, "source": [ "## Running the Closed-Loop Simulation" ] }, { "cell_type": "code", "execution_count": 9, "id": "260ae5b6", "metadata": {}, "outputs": [], "source": [ "# Solve the closed loop system over a 0.1 second time window with 1 ms steps\n", "t_CL, y_CL = RK4_solver(system_eqn_CL, x_0, [0, 4], 1e-4)" ] }, { "cell_type": "markdown", "id": "67fb430c", "metadata": { "tags": [] }, "source": [ "## Plotting the Closed-Loop Simulation Results" ] }, { "cell_type": "code", "execution_count": 10, "id": "58c6770d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABCAAAAK5CAYAAABuVV/UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3z0lEQVR4nOzdd3gUZdvG4WvSQwqd0BIgdBEREBUQRYUgRVABaSLNih1BBBFBUBQs+OqrfqKCShEQFXgFpQhSpUhRpPeaUEOAkGSTzPfHkkBCAptkN7Ob/M7j2CPZmWeeuZObUfZiimGapikAAAAAAAAX8rK6AAAAAAAAUPARQAAAAAAAAJcjgAAAAAAAAC5HAAEAAAAAAFyOAAIAAAAAALgcAQQAAAAAAHA5AggAAAAAAOByBBAAAAAAAMDlfKwuAM6Tmpqqo0ePKiQkRIZhWF0OAAAAAKCAM01T586dU/ny5eXlde1zHAggCpCjR48qPDzc6jIAAAAAAIXMoUOHVLFixWuOIYAoQEJCQiTZGx8aGmpxNddms9m0YMECRUVFydfX1+pykAV65Bnok2egT+6PHnkG+uQZ6JP7o0eewVP6FBcXp/Dw8PTPo9dCAFGApF12ERoa6hEBRJEiRRQaGurWB1NhRo88A33yDPTJ/dEjz0CfPAN9cn/0yDN4Wp8cuQ0AN6EEAAAAAAAuRwABAAAAAABcjgACAAAAAAC4HAEEAAAAAABwOQIIAAAAAADgcgQQAAAAAADA5QggAAAAAACAyxFAAAAAAAAAl/OxugAUPr9vj9GCf6N18KCXVs/ZKi8vcjB3lJqaSo88AH3yDPTJ/dEjz0CfPAN9cn+56pFpypApQ6mSJMNMvfTevGKdKcm8tE4ylHpp/eXvL4+/NMZMtW9j30n6HPZ96PKcl5bZ59flMenr7TVetezKceaV81wxLn27LGq44mfPsCx9uyv3qUx1ZrEs2/rNtEXpy0wzVadOnlLivffK19f3+j3yAIZpmub1h8ETxMXFqWjRojp79qxCQ0OtLidbHy3apQ8X7bS6DAAAAOQjQ6nyvuLloxR5KVU+Sr30NUVehv3rtcZ4G5nXpchLpryUmuGrt1LlZdg/9HpfWnb5+9QrxtuXGZe29c60zeU5r57fyLCv7Oe/ctu0fWW9jf2DZ1qtXpc+RKd/WL9inZFhzKXv7Z9s5XVpvNcV22Uen3lfGcdn3D5tXlgj9vk9KlailNVlZCsnn0M5AwL57rbIEnr+nqratXOnqteoIW8vb6tLQhZSUlPokQegT56BPrk/euQZCkOfDDNZ3qk2eZs2eafa5GUmX36l2r96X7ksu+WpyfI2r97e20zJuCx9efZzGunbpNg/cJspl5alyDAvvZf9fdo6M8UmH0Py0hVjxYfYwiw99jDssYdkyDQuxyMy0mIQXV4mZVh+5bIMY6SMc12aQ4bSI5zL2xsyDaUvu7x/ZRxzqSb7srTxmeu6ulZl+JNuZFHXlT9Txp8rbWzatqmS4uPjFeFTcP57RwCBfHd7ZEk1DA/VvIs71ObuqgXmdKKCxmaz0SMPQJ88A31yf/TIM7ikT6kpku2ilJxgf9kSrvj+opScKKUkXvqaZH+lfZ+cKKXYrlif9v2lcenfX1qXNlf692nzpY1JksxU5/xc7iAneYPhLXn5XHp521/pyy699/K5xrJL4w1DMrwuvfe6tMzr0jKvy9+nLU8fZ2Qae+X2mee8cvss5rxqbFbLLs2b1TjD/uHc/r2u+N7ItO7K95m/z26dfTtbSor++GOZ7mp+96Vj6Rr7uGqdrrP/rNYZV3zchqNsNpvmzZunaoHBVpfiNAQQAAAAcB+maf9wbouXki7YQwDbBSkpXsbFOJU7s1bG33FS6qUP/WkhQfLFjOHBVWFCFsFC8kUpNdnqn/javHwlb99LX32ueO/jwHJnjPO1f0j29r3iw79XpjAg4zJbqrRs+Qrdefc98vULuH6QkP5BF/nGZtOFgF1SiUiJ0BX5iADCDaSkpOjrr7/W5MmT9e+//+r8+fMKCwtT/fr11adPH3Xo0MHqEgEAADIyTfuH+cTzUtI5+9fEc1LSFV+T4tPDg4yBQtr38ZfH2C5e/j6bswB8JN0qSftd9DN5+0k+gZKPv+QbcPl7H3/J21/y8bOP8fa7tOx63/vZt7vy+/Q5svv+ijm8fDzzg7nNpvMBe6TiVfhwCyADAgiLnTlzRm3atNGff/4pwzBUo0YNVa5cWUePHtXs2bPl4+NDAAEAAJwnNVVKjJMSzl5+JcZlEySct69L+z4tXEhb7+qzB7z9JN8i9pdfEZk+gTp9PlHFwyrKy6+I5JsWEAReCgwuva5c7uN/6X3auszjrnjPExsAwKUIICyUmpqq9u3b688//9RDDz2kjz76SBUrVkxff/jwYe3du9fCCgEAgNvJKkDIySsxTjm7ON8BvkGSf7DkHyL5XfHVLy08CEoPEeQbZP/gn3lZ2tgrl3ln/Ktqss2mFfPmqU2bNvLiX9YBwOMQQFjoiy++0IoVK3T33Xdr5syZVz2Dt2LFihkCCQAAUMDYEqSLp6X40xm/Xjxz6fszWa9zxo0KfQKkgKL2l3/I1eGBf4g9VPALueL7YMk/9IrvL30toE+kAAA4FwGEhT766CNJ0qhRo64KHwAAgAdKuiBdOCFdOHnp6wnp/PGM7y+eluLP2L/a4nO/L5/AywHCVa/QLJYVuyJwCLVfigAAQD4igLDIrl27tH37dpUoUUJNmjTR7NmzNXPmTB07dkylS5dWixYt1LNnT/n7+1tdKgAAhZdp2i9bOBctnY+Wzp+4HCRkCBouhQy5CRQMbymwuFSkhBRY4oqvxTO+zzzGh78jAAA8CwGERf766y9JUq1atdSzZ09NmTIlw/rp06fr/fff16+//qpKlSpZUSIAAAVXpmDBiD2iajF/yGvBSulCjHQ+Rjp3TDoXY39UY074BEhBZaSgUlJQ6UuvUpe/FimZMWDwD+XmhwCAQoEAwiLHjh2TJK1bt06rVq3SY489pmHDhqls2bJasWKFnnjiCW3fvl0dO3bU2rVrs7xEIzExUYmJienv4+LiJEk2m002my1/fpBcSqvP3esszOiRZ6BPnoE+5TPTlOJPSXFHZFx62b8/LJ2LlnEuWjofI+OKYMFHUh1JOprNlAFFpeAwmZeCBTOojFSklMygUlIRe7iQ/r1fcM4enZiSYn/hujiWPAN9cn/0yDN4Sp9yUp9hmqaTb4MMR4wePVqvv/66JKlZs2ZatmxZhvWbN29W/fr1ZZqm5syZo/vvv/+qOUaMGKGRI0detXzq1KkqUqSIawoHAMBi3ikJKpJ0SoG2UwpMOqVA22n716TTl5adlrfp2F+GkryLKMG3uBJ9iirBt7gSfItdehVXgu/lZalefi7+qQAA8Ezx8fHq3r27zp49q9DQ0GuO5QwIiwQEXL7x0wsvvHDV+nr16unuu+/W77//rl9//TXLAGLIkCEaMGBA+vu4uDiFh4crKirquo23ms1m08KFC9WyZUv58hgtt0SPPAN98gz0KYdSbFLcYRlnDkixB2ScPSjjzH4p9qCM2AMyLp52aBozqIzM0ApSaIVLX8vLDC0vhZSTGVxWCg6T4RuoQEk+NptW0SO3x7HkGeiT+6NHnsFT+pR2Jr4jCCAsUrx48fTva9WqleWY2rVr6/fff9f+/fuzXO/v75/lTSp9fX3d+g/olTyp1sKKHnkG+uQZ6NMV4k9Lp/ZIZ/ZJZw5IZ/ZLsZe+xh25/mMm/YtKRStKRe0Bg/37ipe/Dy0vw8dfObgQQhI98hT0yTPQJ/dHjzyDu/cpJ7URQFikZs2a6d9n96SLtOUpXBcKAPBEieel03ukU7ulU3vtX9PeXzxz7W19AqRilaTilaTilS9/n/Y1oGi+/AgAAMB5CCAsUr9+fQUEBCghIUF79+5VtWrVrhqzd+9eSVKFChXyuzwAAByTmmI/a+HEDunUroxhw/noa28bWkEqXsUeMGQOGoLDcnYjRwAA4PYKdQDRt29fp85nGIa++uorh8YGBQWpTZs2+vHHH/XNN98oKioqw/ro6Gj99ttvkqR77rnHqXUCAJBjKcn2yyVObL/02mH/enKXlJyQ/XZFSkklq0olq9m/lrj0fYlIyY8bJgMAUJgU6gBi0qRJMgxDznoQSE4CCEkaPny4Zs+ere+//15RUVHq1auXJCk2Nla9e/fWxYsXFRkZqc6dOzulPgAAris11R40xGyRjm+7HDac2i2lJGW9jU+AVKq6VKrGpaDhirAhsFi+lg8AANxXoQ4gJKl69eoaMmRInud5++23tXv37hxtU69ePX3yySfq37+/evfureHDh6tMmTLaunWr4uPjVapUKc2aNUt+fjz6CwDgAglx0vGtUvQ/9sAheov9vS0+6/G+RaTSNaXStTJ+LVZJ8vLO39oBAIDHKfQBRJkyZdLPPMiLL7/8MscBhCQ99dRTqlOnjsaNG6fVq1fr77//Vvny5dW2bVsNGTKE+z8AAPLONKWzh6Rjm+0hQ8wWe+gQeyDr8T4BUpnaUpk6Uplal4OG0IqSl1f+1g4AAAqMQh1AhIaGKiQkxClzBQcHKzQ0NFfbNmvWTM2aNXNKHQCAQs40pbij0rFN0tGNl1/xp7IeH1JeKnujFHbjpa917ZdPcEYDAABwskIdQMTGxjptrvnz5zttLgAAHHYuJmPQcHSjdOH41eO8fOxnNZS9yR42hNWRytaVipTI/5oBAEChVKgDCAAAPEpykv3SicNrpUOXXnGHrx5neNvDhvI3S+Xr219l6ki+AfleMgAAQBoCCAAA3NW5mMthw+F19rMbrnrkpWG/P0Na0FC+vv0MBx5xCQAA3AwBBAAA7sA0pZO7pAMrpAOrpUNrsr5JZGBxqeKtUngj+9cKDSR/59zPCAAAwJUKdQARGRmZ5zkMw9CePXucUA0AoFBJTZVObJP2r7wUOqySLpzINMiQytxwOWwIv1UqWU0yDEtKBgAAyItCHUDs378/19sahiHTNGXwl0AAgCPMVCn6b+nwGunASnvgcPF0xjE+AVLFRlKlplLEbVKFhlJAUWvqBQAAcLJCHUDs27cvy+XTp0/X66+/rtq1a6t///6qXbu2wsLCdPz4cW3btk2ffvqptm3bplGjRunhhx/O56oBAB7jzAFp7xJ57/5d9+1cLN9N5zOu9y0ihd9mDxwqN7UHDj7+1tQKAADgYoU6gKhUqdJVyxYtWqTXXntNL7zwgt57770M62rUqKE77rhDjz/+uAYNGqShQ4eqQYMGWc4DACiELp6R9i2X9i6R9i6VTu+VJHlJ8pdk+gXJiGhiDxsq3WF/SoW3r4UFAwAA5J9CHUBk5e2331axYsX07rvvXnPcmDFjNHHiRL399tu6995786k6AIBbSU2RjmyQdv0m7fnd/pQKM/XyesNbqniLUirfqVXR/rq94zPyDeDpFAAAoHAigMhkw4YNqlmzpry9va85zsfHR1WrVtVff/2VT5UBANzCxTPS7sXSrgXS7kVS/KmM60vVkCKbS5F3S5XvkAJClWqz6fS8eZztAAAACjUCiExM09S+ffuUmpoqLy+vbMelpKRo3759Mk0zH6sDAOQ705SOb7Of5bBzgf3xmGbK5fX+RaVq90jVWtiDh6IVLSsVAADAnRFAZNKoUSMtWbJEw4cP1+jRo7MdN3LkSJ08eVL33HNPPlYHAMgXKcnSwdXS9v9J2+dJZw9mXF+6llQ9SqrRyn4TSc5sAAAAuC4CiExef/11LV26VGPGjNHixYv11FNPqXbt2ipdurROnDih7du36/PPP9eaNWvk5eWl4cOHW10yAMAZbAn2m0du+5+0Y17GR2T6BEhV7rSHDtWjpOLcfBgAACCnCCAyueuuuzR58mQ98cQTWrNmjdauXXvVGNM0FRQUpP/7v//TnXfeaUGVAACnSDgr7VoobZtr/2q7cHldYHGpZhupVjv7pRV+3DwSAAAgLwggstC1a1fdeeed+uyzz7RgwQLt3LlT58+fV3BwsGrUqKGoqCg99dRTqlChgtWlAgByKvG8tPNXacss+00kU5IurwutINVqK9W+X4poInnzv0kAAABn4W9W2ShfvrxGjRqlUaNGWV0KACCvbAnS7oX20GHHr1LyxcvrSlaXarezhw7lG0iGYV2dAAAABRgBBACgYEqxSXv/kLb8IG3/RUqMu7yueBXpxo7SjQ9JYXWsqxEAAKAQIYAAABQcpikd2yxtnib9M1OKP3V5XWgFe+BwY0ep3M2c6QAAAJDPCCCysW/fPk2fPl2bN2/W6dOnZbPZshxnGIYWL16cz9UBADI4Fy39PcMePBzfenl5UGmpzoP20KHirZKXl3U1AgAAFHIEEFkYN26cXnvtNSUnJ8u49C9kpmmmr79ymcG/oAGANWwJ0o5fpE3TpD2LJTPVvtzb334jyZu7S5F3cyNJAAAAN8HfyjKZN2+eBg8erHLlymnUqFEaP368/v33Xy1cuFCHDh3S5s2b9dVXXyklJUXvvPOObrrpJqtLBoDCJeZf6a9J0t/T7Y/RTFPxVnvoUOdBKbCYVdUBAAAgGwQQmXz88ccyDEMzZsxQ06ZNNXHiREnSvffemz5m2LBh6tixo15//XWtW7fOqlIBoPBIipf+/Un6a6J0+Ir/7oZWlOp1lep1k0pVs64+AAAAXBcBRCZ//fWXypUrp6ZNm2Y7pmTJkpo2bZoqVaqkkSNHavLkyflYIQAUImlnO2yeLiVeOtvBy0eq2UZq2Nt+iQX3dQAAAPAIBBCZxMXFqV69eunvAwIC0peHhoamLy9XrpxuvPFGLVmyJN9rBIACLTlR+vdnad2X0uG1l5cXqyQ17CXd/IgUEmZZeQAAAMgdAohMypQpo7i4uAzvJWnHjh1q1KhRhrHnz5/XqVOnBABwgnMx9kss1n0lXThuX5Z2tsMtfaQqzTnbAQAAwIMRQGRStWpVbdiwIf39bbfdpmnTpumzzz7LEEAsXrxYu3fvVpUqVawoEwAKjiN/SWv+T9ryo5R66ZHHIeWkW/pJDR7lbAcAAIACggAik/vuu0/Lli3TunXr1KhRI3Xv3l1vvPGGvvnmG+3cuVONGzdWTEyMZsyYIcMw1LNnT6tLBgDPk2KTts6W1nye8aaS4bdJtz0p1W4veftaVx8AAACcjgAik4cffli7d+/W6dOnJUmlSpXS9OnT1bVrV61atUqrVq1KH9upUycNGzbMqlIBwPMknpc2fCut/q8Ud9i+zMtXurGjdNsTUoWG1tYHAAAAlyGAyKRKlSqaMGFChmVRUVHat2+f5s+fr/379yswMFDNmjVTgwYNLKoSADzM+RPS2v+T1k6QEmLty4JKS40ekxr24TILAACAQoAAwkFFixZV165drS4DADzLqT3S6k+kTVOl5AT7shJVpSbPSfW6Sb4B1tYHAACAfEMAkYmXl5dKlCihI0eOyN/f3+pyAMAzRW+Rlo2z3+dBpn1ZhYZS0xelWm0lL28rqwMAAIAFCCAyCQ4OVtWqVQkfACA3jm2W/hgrbf/f5WXVW0lNX5AqNZEMw7raAAAAYCkCiExq1aqlmJgYq8sAAM9yZIM9eNg5/9ICQ7rxIanZy1JYHUtLAwAAgHvwsroAd/P444/r4MGD+uWXX6wuBQDc3+H10pTO0oS77eGD4SXVfVh6Zo3U6WvCBwAAAKTjDIhMHn/8cW3cuFHdunXTqFGj1LNnT5UoUcLqsgDAvUT/Iy0eJe36zf7e8JZueth+xkOp6tbWBgAAALdEAJFJZGSkJOnixYsaMGCABgwYoFKlSikoKCjL8YZhaM+ePflZIgBY59Qeacnb0pZZkkx78FCvm9RsgFSyqtXVAQAAwI0RQGSyf//+q5adOHFCJ06cyHK8wQ3VABQGccekP96VNn4npSbbl9V5SLr7NalUNWtrAwAAgEcggMhk3759VpcAAO4j/rS0cry05v+k5AT7smotpXtfl8rVs7Q0AAAAeBYCiEwqVapkdQkAYL3kJGndl/azHhJi7cvCb5davGF/nCYAAACQQwQQAIDLTFPa/ou08HXp9F77sjI3SC1GSNWjJC47AwAAQC4RQAAA7I5ukhYMk/Yvt78PKiPdM0yq/4jk5W1paQAAAPB8XlYXYKV77rlHL774olPmev7553Xvvfc6ZS4AyFdxx6Sf+0tfNLeHDz4BUrOB0vMbpIa9CB8AAADgFIX6DIilS5cqOTnZKXNt3LhRq1atcspcAJAvUmzSn5/Z7/OQdN6+rO7D0r3DpWLh1tYGAACAAqdQBxCSlJiYqEOHDsk0zTzPAwAeY+8f0rxB0skd9vcVG0n3vSNVvMXaugAAAFBgFfoAYv369apcuXKe5zFNUwY3ZwPg7uKO2u/zsGWW/X2RUlLLN6V63SSvQn1VHgAAAFysUAcQERERhAYACofMl1sYXlKjx6S7h0qBxa2uDgAAAIVAoQ4g9u/fb3UJAOB6h9ZJc5+Xjm+1v694q9T2PalcPWvrAgAAQKFSqAMIACjQEs9Ji9+U1k6QZEpFSkotR3G5BQAAACxBAAEABdGOX6VfBkhxR+zv63WXWr0lFSlhbV0AAAAotAggAKAgORcj/TpY+vcn+/tilaT7x0tV77G0LAAAAIAAAgAKAtOUNk2zhw8JZyXDW2r8jNR8iORXxOrqAAAAAAIIAPB0/rZYec/sKe361b6g7E1S+4+l8jdbWhcAAABwJQIIAPBgxtafdfe2ofJKOS95+UrNX5Wavih58593AAAAuBf+hgoAnij+tPTLy/L590f5SDLD6sp48HOp7I1WVwYAAABkiQACADzNjvnSnOelC8dlGt7aGdZOkb0/k29AkNWVAQAAANkigAAAT5EUL/02VPprov19qZpKuf9jbd8UrUhvP2trAwAAAK7Dy+oCAAAOiP5H+qL55fCh8bPSk8tklm9gaVkAAACAowggcsnb21ve3t5q0KCBpkyZouTkZKtLAlAQmab052fShHukkzuk4DCp509Sq7ck3wCrqwMAAAAcRgCRS6ZpyjRNbdq0SY8++qiqVKmisWPHWl0WgILk/HFpSmfp11ellCSpxn3S06ukqvdYXRkAAACQY9wDIpeWLFkiSYqOjtaqVau0YsUKvf7663rllVcsrgxAgbB7sfTTk9KFE5JPgBQ1Wmr0mGQYVlcGAAAA5AoBRC7ddddd6d936dJFkhQfH29VOQAKitQU6Y93pT/GSjKlMjdIHb+Swm6wujIAAAAgTwggnKhIkSJWlwDAk50/Ic3qJ+37w/6+YR/pvjGSb6C1dQEAAABOQAABAO7gwCppZh/pfLTkW0RqN16q18XqqgAAAACnIYC4hrNnz2rv3r06f/68TNPMdtydd97plP0NGzZMb731liRp1KhRGjZsmFPmBeDGTFNa+ZG0+E3JTJFK1ZQe/lYqU8vqygAAAACnIoDIwrJly/Tqq69qzZo11x1rGIZTHsG5bds2jRs3Ls/zAPAgCXHST09JO36xv6/7sNTuQ8k/2Nq6AAAAABcggMhkyZIluu+++2Sz2eTv76/KlSurTJky8vJy3RNLTdPUk08+KV9fX91xxx36/fffXbYvAG7i5C7p++7SyZ2St5/U+l37PR94ygUAAAAKKAKITN544w3ZbDb16NFD48ePV8mSJV2+z6+++krLly/Xu+++q61bt7p8fwAstnOB/WaTiXFSSHmp62SpQkOrqwIAAABcynX/rO+hNmzYoGLFimnSpEn5Ej6cOHFCgwcP1g033KCXXnrJ5fsDYCHTlJa/L0192B4+hN8uPfkH4QMAAAAKBc6AyMTPz0/VqlWTt7d3vuzvpZde0unTp/Xjjz/K19c3X/YJwAJJF6Sf+0tbf7a/v6WvdN+7ko+fpWUBAAAA+YUAIpPbbrtNf/31l0zTlOHia7EXL16sKVOm6JFHHtFdd93l0n0BsFDsQWlaNylmi+TlK7UZJ93Sx+qqAAAAgHxFAJHJG2+8obvuukvvvfeeBg0a5LL9JCQk6KmnnlLRokX13nvv5WqOxMREJSYmpr+Pi4uTJNlsNtlsNqfU6Spp9bl7nYUZPXKSY5vlM72bjAvHZQaVUUrHiTLDb5Oc9HulT56BPrk/euQZ6JNnoE/ujx55Bk/pU07qI4DIpHz58vrggw/08ssva9WqVerXr5+qVq2qoKCgbLeJiIjI8X5Gjx6t3bt365NPPlFYWFiuah0zZoxGjhx51fIFCxaoSJEiuZozvy1cuNDqEnAd9Cj3ypzdrEb7P5GRmqizAeH6s/IAJfxzSvpnntP3RZ88A31yf/TIM9Anz0Cf3B898gzu3qf4+HiHxxqmaZourMXjeHl5yTAMhy/BMAxDycnJOdrHtm3bdPPNN+vGG2/UunXrMjzis3fv3vrmm280atQoDRs27JrzZHUGRHh4uE6ePKnQ0NAc1ZTfbDabFi5cqJYtW3LvCzdFj/LGa8Mkef36igwzValVmivloa+lAOcfl/TJM9An90ePPAN98gz0yf3RI8/gKX2Ki4tTqVKldPbs2et+DuUMiEwiIiJcfu+H/v37Kzk5WZ999lmG8CGn/P395e/vf9VyX19ft/4DeiVPqrWwokc5lJoqLR4prRxvf3/zI/K6f7y8vF37O6RPnoE+uT965Bnok2egT+6PHnkGd+9TTmojgMhk//79Lt/Hxo0bZRiG2rdvf9W6s2fPSpLeffddffLJJwoPD9e6detcXhMAJ0hOlH5+Wtoyy/7+7tekOwdJLg41AQAAAE9AAGGRlJQUxcTEZLv+/PnzOn/+vAICAvKxKgC5Fn9a+r6HdHCV5OUjtf9Eurmb1VUBAAAAbiP35/8j12JjY2WaZpavXr16SZJGjRol0zTz5YwMAHl0ep/0VZQ9fPAPlR6ZRfgAAAAAZMIZENlITEzUtGnTtGDBAu3cuVPnzp1TSEiIatSooVatWqlr165Z3n8BQCFz+C9pWhfpwgkptKLUY6YUdoPVVQEAAABuhwAiCxs2bFDnzp21f/9+ZX5IyIYNGzR9+nSNGjVKM2bMUIMGDSyqEoDltv8i/dBPSr4olb1J6j5DCi1ndVUAAACAWyKAyOTw4cNq2bKlzpw5o1KlSunxxx9XnTp1FBYWppiYGP3777/68ssvtXfvXrVq1UqbNm1ShQoVrC4bQH5b83/S/MGSTKlaS6nzRMk/xOqqAAAAALdFAJHJmDFjdObMGT300EP67rvvFBgYeNWY119/XT179tSsWbM0ZswYffLJJ07b/6RJkzRp0iSnzQfAyVJTpYWvS6svHfcNe0tt3pe8+c8pAAAAcC3chDKT+fPnKygoSJMmTcoyfJCkgIAATZw4UUFBQZo3b14+VwjAMraL0sxel8OHe9+Q2o0nfAAAAAAcwN+aMzl69KhuuukmBQcHX3NccHCwateurX/++SefKgNgqQsnpWndpMNrJW8/6YHPpLqdrK4KAAAA8BgEEJmEhIQoJibGobExMTEKCgpycUUALHdqjzSlk3R6rxRQTOo6Varc1OqqAAAAAI/CJRiZNGzYUIcPH9b3339/zXHTpk3ToUOHdMstt+RTZQAscXCN9GULe/hQLELqt5DwAQAAAMgFAohMnnvuOZmmqV69eunll1/Wvn37Mqzft2+fBgwYoD59+sgwDD3//PMWVQrA5bbOlr65X7p4WipfX3pssVS6htVVAQAAAB6JACKTtm3bavDgwbLZbBo/fryqVaumIkWKqFKlSipSpIiqVaumjz76SElJSXr11VfVpk0bq0sG4GymKa36RJrRS0pJlGq0lnr/IgWXsboyAAAAwGMRQGRhzJgxmjNnjho3bizDMJSQkKBDhw4pISFBhmGoadOmmjt3rt566y2rSwXgbKkp0vxXpAWvSTKlRo9LXadIftzvBQAAAMgLbkKZjXbt2qldu3a6cOGCdu/erfPnzys4OFjVqlXjxpNAQZV0QZr1mLTj0uN1o0ZLjZ+VDMPaugAAAIACgADiOoKCglSvXj2rywDgauePS1O7SEc3SN7+0kNfSHUesLoqAAAAoMAggACAk7ukyR2l2ANSYAmp2zQp4narqwIAAAAKlEIdQHz77beSpKJFi6pDhw4ZluXEo48+6tS6AOSjA6ukad2khFipeBXpkVlSyapWVwUAAAAUOIU6gOjdu7cMw1DNmjXTA4i0ZTlBAAF4qH9+kH5+WkpJkio2krp9LwWVsroqAAAAoEAq1AHEo48+KsMwVK5cuauWASjATFNaOV5aNML+vvb90kMTJN9AK6sCAAAACrRCHUBMmjTJoWUACpCUZGneQOmvifb3tz8jRY2SvLytrQsAAAAo4Ap1AAGgkEk8L/3QR9q1QJIh3feOdPtTVlcFAAAAFApeVhfgbu655x69+OKLDo196aWXdO+997q2IADOcS5amtTGHj74BEpdJhM+AAAAAPmIMyAyWbp0qZKTkx0au2nTJi1btszFFQHIs+PbpCmdpbOHpCKlpO7TpYq3WF0VAAAAUKgQQORBUlKSvL25bhxwa3v/kKb3lBLPSiWrST1+kEpUsboqAAAAoNAhgMilixcvaufOnSpZsqTVpQDIzubp0uxnpFSbFNFY6jpVKlLC6qoAAACAQqnQBxCzZ8/W7NmzMyzbtWuX+vbtm+02Fy9e1Lp163T69Gl16tTJ1SUCyCnTlJaNk5a8ZX9f5yHpgc8k3wBr6wIAAAAKsUIfQGzatCnDozcNw1BMTIxDj+OsXr263n77bdcVByDnUmzS/16UNk62v2/6gnTvCMmLe+4CAAAAVir0AcQDDzygypUrS5JM01Tfvn1Vo0YNDRkyJMvxhmEoMDBQkZGRatCggQzDyMdqAVxTQpw0s5e053fJ8JLajJMaPWZ1VQAAAABEAKF69eqpXr166e9HjBihevXqqVevXhZWBSDHzh6Rpj4sxWyRfItInSZKNe+zuioAAAAAlxT6ACKz/fv3W10CgJyK3mJ/zOa5o1JwmP0xm+XrW10VAAAAgCsQQADwbLsXSzN6SUnnpFI1pUd+kIpFWF0VAAAAgEwKdQDx7bffSpKKFi2qDh06ZFiWE48++qhT6wLgoA3f2W84mZosVW4mdflOCixudVUAAAAAslCoA4jevXvLMAzVrFkzPYBIW5YTBBBAPjNNacnb0rKx9vd1H5Y6fCL5+FtbFwAAAIBsFeoA4tFHH5VhGCpXrtxVywC4qeQkac5z0t/f2983GyjdM0ziuAUAAADcWqEOICZNmuTQMgBu4mKsNP0Raf9yyfCW2n0oNeSJNQAAAIAnKNQBBAAPEnvI/qSLE9skv2Dp4W+kai2srgoAAACAg7ysLsATnTlzxuoSgMLl6Cbpy3vt4UNIOanPfMIHAAAAwMMQQGSyY8cO/ec//9GKFSsyLE9KStLzzz+v4OBglSpVSlWrVtWCBQssqhIoRHYukCa2kc7HSGXqSI8tksrdZHVVAAAAAHKIACKT//73v3rppZcUFxeXYfmIESP0ySefKD4+XqZpat++ferQoYP27dtnUaVAIbD+a2laV8l2QYpsLvWdLxWtaHVVAAAAAHKBACKTP/74QwEBAbrvvvvSlyUmJurTTz+Vv7+/fvvtN8XGxmrgwIFKTEzU+++/b2G1QAGVmiotGiH97yXJTJFu7iH1+EEKKGp1ZQAAAAByiQAik2PHjik8PFxeXpd/NStWrFBcXJweeughtWzZUqGhoRo9erSKFi2qP/74w8JqgQIoOVH68TFpxYf2982HSh3+K3n7WlsXAAAAgDzhKRiZxMbGqkqVKhmWLV++XIZhqHXr1unL/Pz8FBkZqd27d+d3iUDBFX9a+r6HdHCV5OUjtf9Yurm71VUBAAAAcAICiEyKFi2qw4cPZ1i2ZMkSSdKdd96ZYblhGPlWF1Dgnd5nf8zmqV2Sf6jU5Tv7fR8AAAAAFAhcgpFJgwYNFB0drblz50qS/v77b61cuVLVq1dXREREhrF79+5VuXLlrCgTKFiO/CV91dIePoRWlPr+SvgAAAAAFDAEEJk8++yzMk1TnTp10i233KI77rhDpmnqmWeeyTBu/fr1io2N1c0332xNoUBBsX2eNLGtdOGEVLau/TGbYXWsrgoAAACAkxFAZHL//ffrP//5j4KDg7VhwwbZbDYNHDhQzz33XIZxX375pSQpKirKijKBgmHNF9L0HlLyRalaC6nPfCmUs4oAAACAgoh7QGTh2Wef1dNPP62TJ0+qdOnSGZ6IkeaFF17Q008/rerVq1tQIeDhUlOlha9Lqz+xv2/QS2r7geTNf5IAAACAgoq/7WfD29tbYWFh2a6vXbt2PlYDFCC2i9JPT0pbZ9vf3ztcumOAxE1dAQAAgAKNAOI6du7cqZ07d+rcuXMKCQlRjRo1VKNGDavLAjzThVPStK7S4bWSt5/U4VPpps5WVwUAAAAgHxBAZOP//u//9O677+rAgQNXratcubJeffVVPf744xZUBnioU3ukKZ2k03ulgKJS16lS5TusrgoAAABAPiGAyEKfPn307bffyjRN+fv7Kzw8XGFhYYqJidGhQ4e0b98+PfXUU1q1apUmTpxodbmA+zu0VpraRbp4WioWIfX4QSpd0+qqAAAAAOQjnoKRydSpU/XNN9+oSJEiGjt2rE6cOKGdO3dq+fLl2rlzp06cOKGxY8cqKChI3377raZNm2Z1yYB72zpb+uZ+e/hQ7map3yLCBwAAAKAQIoDIZMKECTIMQ7NmzdLAgQMVHBycYX1wcLAGDhyoH374QaZpasKECRZVCrg505RW/1ea0UtKTpBqtJb6zJNCsr+5KwAAAICCi0swMtm8ebMiIyMVFRV1zXFRUVGqVq2aNm7cmE+VAR4kNUX6dYi09v/s7xs9JrUeK3l5W1sXAAAAAMsQQGSSkJCgYsWKOTQ2NDRUhw8fdm1BgKdJipdmPSbt+MX+vuUoqclzPGYTAAAAKOQIIDKJiIjQli1bdPLkSZUqVSrbcSdOnNC///6rSpUq5WN1gJs7f0Ka1kU68pfk7S899H9SnQetrgoAAACAG+AeEJm0b99eiYmJ6tKli06cOJHlmOPHj6tLly5KSkpShw4d8rlCwE2d3CV9ea89fAgsIfWaQ/gAAAAAIB1nQGTy6quv6vvvv9fSpUtVqVIlde7cWTfccIPKlCmj48ePa+vWrZo5c6YSEhIUHh6uwYMHW10yYL0Dq6Rp3aSEWKl4ZanHLKlUNaurAgAAAOBGCCAyKVGihH7//Xd169ZNf/31l7777jsZV1y7bpqmJKlRo0aaOnWqSpQoYVWpgHvYMkv66SkpJUmqcIvUfboUlP3lSwAAAAAKJwKILFSrVk3r1q3T4sWLtWDBAu3cuVPnz59XcHCwatSooVatWumee+6xukzAWqYprRwvLRphf1+rnfTQBMmviJVVAQAAAHBTBBDXcO+99+ree++1ugzA/aQkS/MHSeu/tr+/vb8UNZrHbAIAAADIFjehlGSz2TR27FjVr19fwcHBCg4O1s0336wxY8YoMTHR6vIA95J4Xvq+26XwwZDue0e6bwzhAwAAAIBrKvRnQKSkpKh169ZasmRJ+v0dJOnvv//WP//8o/nz5+v333+Xj0+h/1UB0rloaerD0rHNkk+A1PFLqfb9VlcFAAAAwAMU+jMgvvjii/SA4fnnn9cPP/ygmTNn6rnnnpOPj49Wrlypzz77zOoyAesd3yZ92cIePhQpJfX+hfABAAAAgMMK/T/rT5s2TYZhaPLkyercuXP68o4dO6pJkybq1q2bvv/+ez333HMWVglYbN8y6ftHpMSzUomq0iM/SCUira4KAAAAgAcp9GdA/PvvvypTpkyG8CFNly5dFBYWpq1bt1pQGeAejH9mSN89ZA8fwm+XHltE+AAAAAAgxwp9ABEbG6vIyOw/TFWpUkXnzp3Lx4oAN2GaqhE9Wz5z+kupNqnOg9Kjs6UiJayuDAAAAIAHKvQBhGma8vbO/u793t7eGW5OCRQKKTZ5//Kiah+bZX/f5Hmp49eSb4C1dQEAAADwWIX+HhAAMkmIk2b2ktee32XKUGqrd+Xd+EmrqwIAAADg4QggJK1fvz7byzCio6MlKdv1hmFoz549Od6naZpauXKlZs+ereXLl2v79u2Kj49XqVKl1LhxYz377LO6++67czwvkCdnj9gfsxmzRaZvEa0Jf1INb+mr7M8RAgAAAADHEEBISkhI0P79+685Jrv1hmHkap+///67WrRoIUny8vJStWrVFBQUpF27dunHH3/Ujz/+qGHDhmnUqFG5mh/Isegt0pTO0rmjUlAZpTw8RTGbjlldFQAAAIACotAHEBMnTrRkv6Zpqlq1ahowYIC6du2q4sWLS5KSkpI0YsQIjRkzRqNHj9Ztt92mdu3aWVIjCpHdi6UZvaSkc1KpmlKPmTKDy0sEEAAAAACcpNAHEL169bJkv7feequ2bdsmH5+MLfDz89Pbb7+tTZs2af78+ZowYQIBBFxr42Rp7gtSarJU6Q6p62QpsLhks1ldGQAAAIACpNA/BcMqoaGhV4UPV2rZsqUkaefOnflVEgob05SWvC3NfsYePtTtLPX80R4+AAAAAICTFfozINxVQkKCJCkwMNDiSlAgJSdJc5+XNk+zv282ULpnmJTLe5oAAAAAwPUQQLgh0zQ1c+ZMSVLTpk0trgYFzsVYaUZPad8yyfCW2n0oNbTmUiQAAAAAhQcBhBuaMGGCNm7cKD8/P7344ovZjktMTFRiYmL6+7i4OEmSzWaTzc2v30+rz93rLHDOHpbP9K4yTmyX6ReklIe+lln13izv90CPPAN98gz0yf3RI89AnzwDfXJ/9MgzeEqfclKfYZqm6cJakEMbNmxQ06ZNlZCQoLFjx2rQoEHZjh0xYoRGjhx51fKpU6eqSJEiriwTHqho/H7dvucDBSTH6qJvcf0ZOUBxRSpZXRYAAAAADxYfH6/u3bvr7NmzCg0NveZYAgg3sm/fPjVt2lTHjh1T9+7dNXnyZBnXuCY/qzMgwsPDdfLkyes23mo2m00LFy5Uy5Yt5evra3U5BZ6xe6G8f3xMhu2CzNK1ldz1eym0wjW3oUeegT55Bvrk/uiRZ6BPnoE+uT965Bk8pU9xcXEqVaqUQwEEl2C4iejoaLVs2VLHjh1T27ZtNWnSpGuGD5Lk7+8vf3//q5b7+vq69R/QK3lSrR5r/UTpl5clM0WKbC7j4W/lG1DU4c3pkWegT56BPrk/euQZ6JNnoE/ujx55BnfvU05qI4DIZNmyZZKkxo0b51uTT58+rZYtW2rPnj266667NHPmTLf+AwYPkZoq/f6mtOJD+/t63aX7P5J8/KytCwAAAEChRACRSfPmzRUREaH9+/fny/7Onz+vNm3aaMuWLWrUqJHmzp3LozeRd8mJ0s9PS1tm2d83HyLdNZjHbAIAAACwDAFEJiVLllTZsmXzZV+JiYnq0KGD1qxZozp16ujXX39VSEhIvuwbBVj8aWn6I9KBlZKXj9T+Y+nm7lZXBQAAAKCQI4DI5JZbbtG6deuUmpoqLy8vl+0nJSVFXbt21e+//66qVatq4cKFKlGihMv2h0LizH5pSmfp5E7JP1R6+Fup6t1WVwUAAAAABBCZvfLKK2rZsqXGjBmj1157zWX7mTFjhn7++WdJkpeXlzp37pzluHLlymnmzJkuqwMFyJG/pKldpAsn7E+46DFTCqtjdVUAAADIxGazKSUlxdL9+/j4KCEhwdI6cG1W9Mnb29ul9yMkgMikatWqGj16tIYPH67169erZ8+eql27toKCgrLdJiIiIsf7ufLxmbt27dKuXbuyHFepUqUcz41CaPs8aVY/yRYvhdWVesyQQstbXRUAAACuEBcXp5MnT2b4LGAF0zRVtmxZHTp06LpP3oN1rOqTv7+/SpUqdd1HauYGAUQmlStXlmEYMk1Tc+bM0Zw5c6453jAMJScn53g/vXv3Vu/evXNZJXCFtROk+a9IZqpUrYXUeZLkz71EAAAA3ElcXJyOHDmi4OBglSpVSr6+vpZ9+E9NTdX58+cVHBzs0svOkTf53SfTNGWz2XT27FkdOXJEkpweQhBAZBIREUEKCM+QmiotfF1a/Yn9fYNHpbYfSN48whUAAMDdnDx5UsHBwapYsaLlnzdSU1OVlJSkgIAAAgg3ZkWfAgMDFRISosOHD+vkyZMEEK6WX4/fBPLEdlH66Ulp62z7+3tel5q9zGM2AQAA3JDNZlNiYqJKlSplefgAXI9hGCpatKiOHDkim83m1HtCEEAAnubCKen7btKhNZKXr/TAZ9JNWd/EFAAAANZLu4GgK2/uBzhT2p/VlJQUAgig0Dq1R5rSSTq9VwooKnWZIlVpZnVVAAAAcABnP8BTuOrPKgFENhITEzVt2jQtWLBAO3fu1Llz5xQSEqIaNWqoVatW6tq1q/z9/a0uE4XJobXStK5S/CmpaIT0yA9S6ZpWVwUAAAAADiGAyMKGDRvUuXNn7d+/X6ZpXrVu+vTpGjVqlGbMmKEGDRpYVCUKla2zpR+fkJITpHI3S91nSCFhVlcFAAAAAA4jgMjk8OHDatmypc6cOaNSpUrp8ccfV506dRQWFqaYmBj9+++/+vLLL7V37161atVKmzZtUoUKFawuGwXZ6k+l34ZKMqUa90kdv5L8g62uCgAAAAByhGeuZDJmzBidOXNGDz30kA4cOKC33npL3bt317333qvu3bvrrbfe0oEDB9SxY0edOnVKY8aMsbpkFFSpKdL8wdJvQySZ0i397Pd8IHwAAAAACpzevXvLMAxNmjTJ6lJchgAik/nz5ysoKEiTJk1SYGBglmMCAgI0ceJEBQUFad68eflcIQqFpHhpek9pzef29y3flNq+L3lz0hIAAAAKtoMHD2rAgAG68cYbFRQUpMDAQEVERKhJkyYaNGiQfvvttzzvIzY2ViNGjND48ePzXrCb2rRpk0aMGKGff/7Z6lLS8Wkmk6NHj+qmm25ScPC1/5U5ODhYtWvX1j///JNPlaHQOH9CmtZFOvKX5O0vPfi5dONDVlcFAAAAuNzvv/+uBx54QOfOnZO3t7fCw8NVpkwZnT59Wn/++adWr16tiRMn6uTJk3naT2xsrEaOHKlKlSrpxRdfdE7xeVSuXDnVrFlTRYsWdcp8mzZt0siRI9WrVy898MADTpkzrwggMgkJCVFMTIxDY2NiYhQUFOTiilConNwlTe4oxR6QAotLXadJlRpbXRUAAADgcnFxcerSpYvOnTuntm3b6r///a8qVaqUvj42NlazZ8/WjBkzLKzSdcaMGVPgL/HnEoxMGjZsqMOHD+v777+/5rhp06bp0KFDuuWWW/KpMhR4B1ZJX7W0hw/FK0v9FhE+AAAAoNCYN2+eTp48qdDQUM2YMSND+CBJxYoVU69evfTLL79YVCHyigAik+eee06maapXr156+eWXtW/fvgzr9+3bpwEDBqhPnz4yDEPPP/+8RZWiQNkyS/q2g3TxjFThFnv4UKqa1VUBAAAA+Wbv3r2SpBo1aqhIkSI52tY0TX3//fdq2bKlSpYsKX9/f0VGRur5559XdHR0hrG9e/dWlSpVJEkHDhyQYRgZXmlGjBghwzA0YsQIRUdHq1+/fipfvrwCAgJUu3Ztvffee0pOTs62plWrVumhhx5SWFiY/Pz8VLFiRT366KPatm1bluOzuwnlyJEj0+s4e/asXnzxRUVERMjf31/VqlXTqFGjrqqjcuXK6tOnjyTpm2++yfDzNW/e3NFfq9NxCUYmbdu21eDBg/Xuu+9q/PjxGj9+vPz9/VW6dGmdOHFCiYmJkux/wIcMGaI2bdpYXDE8mmlKK8dLi0bY39dqJz00QfLL2X9wAQAAAE8XGhoqSdq1a5diY2NVrFgxh7az2Wzq0aOHZs6cKUkqX768wsPDtWvXLn388cf64YcftHTpUtWoUUOSPeC45ZZbtH79evn7+1/3rPZTp07p1ltv1dGjR1W3bl2FhIRo+/btGjRokFauXKlZs2bJyyvjv+1/9tlneuaZZ2SapsqUKaN69epp9+7d+u677zRz5kz98MMPatu2bY5+P2fPnlXjxo21a9cu3XjjjfL29taePXs0fPhwHTx4UBMmTEgf26hRI/n5+WnXrl0qU6aMqlevnr6ubt26OdqvM3EGRBbGjBmjOXPmqHHjxjIMQwkJCTp06JASEhJkGIaaNm2quXPn6q233rK6VHiylGTplwGXw4fbnpYe/pbwAQAAAIVSVFSUvLy8dPbsWbVo0UKzZs3S2bNnr7vd8OHDNXPmTNWvX18bN27UkSNHtGnTJp08eVL9+/fXsWPH1KNHj/TxQ4cOTQ8rypYtqxUrVmR4Zfb555+rWLFi2r17tzZu3KgdO3bojz/+UNGiRfXzzz/rs88+yzB+06ZNev7552WapsaOHatjx45p3bp1io6OVv/+/ZWQkKAePXro2LFjOfr9/Pe//1Xp0qV14MABbdy4Ufv27dOcOXPk7e2tL7/8Utu3b08fO3PmTA0dOlSS1Lp16ww/38cff5yj/ToTAUQ22rVrpxUrVujs2bPauHGjli9fro0bN+rs2bNatmxZjtMqIIPE89L33aX1X0sypPvekVq/I3l5W10ZAAAA8plpmopPSs7X18WkFKfMY5qm034PNWrU0KhRoyRJf/31lzp16qTixYurVq1a6tOnj6ZPn55+RnqaEydO6MMPP1RoaKjmzJmjm2++OX1dYGCgPv74YzVq1Ejr16/X8uXLc1VXcnKyJk2apMqVK6cvu/POO9Nrfe+99zL8HtIuzejQoYMGDRqUfnaEv7+/PvnkE9WpU0dnz569Kri4Hh8fH02ZMkXly5dPX3b//ferQ4cOkqT58+fn6ufLT1yCcR1BQUGqV6+e1WWgIDkXLU19WDq2WfIJkDp+KdW+3+qqAAAAYJGLthTdMPw3q8vIla1vtlIRP+d9rBw6dKgaN26s9957T4sWLVJSUpJ27NihHTt2aNKkSYqIiNA333yTfh+DefPmKTExUe3bt1fFihWvms/Ly0vt2rXTunXr9Mcff6hZs2Y5rqlx48Zq0KDBVcv79u2rV155Rfv379eOHTtUq1YtSdKCBQsk2e8vmFnafQSffPJJLViwQG+++abDddx3331Z/oyNGjXSjz/+mH4PDXdGAJGJt7e37rjjDv3xxx/XHXv33Xdr+fLl17zxCJDB8e3SlE7S2UNSkZJSt+lSeCOrqwIAAADcxt133627775bFy9e1Pr167VmzRrNmzdPS5cu1cGDB9WmTRtt2LBBtWrV0j///CNJ+vPPP3XHHXdkOV9MTIwk6ciRI7mqp3bt2lkuDwoKSr/XxM6dO1WrVi3FxsbqxIkTkqQbbrghy+3q1KkjSdq5c2eO6qhatWqWy8uUKSNJOn/+fI7mswIBRCamaeboNCJnnnKEAm7fMun7R6TEs1KJqtIjP0glIq2uCgAAABYL9PXW1jdb5dv+UlNTdS7unEJCQ666eWJOBfq67hLiwMBANWvWTM2aNdPAgQO1YsUK3Xfffbpw4YLef/99TZgwIf0eEYcOHdKhQ4euOd/FixdzVUfaB/yshIWFadeuXTp37pykjCFAdtuFhYVJUvo2jgoKCspyeVoPPeGzKQFEHly4cEG+vr5WlwFPsHm6NPsZKdUmhd8udZ0qBZW0uioAAAC4AcMwnHoZw/WkpqYq2c9bRfx88hxA5Kc77rhD/fv317hx47R27VpJUnBwsCTptdde0+jRo12y37QzGrJy/PhxSVJISEiGetLWlStX7qpt0s7ISNumMPGcP21uZseOHdqyZYsqVKhgdSlwZ6Yp/TFO+ukJe/hwwwPSo7MJHwAAAIBciIy0n0GclJQk6fJlDlu2bMnRPIZhODx227ZtWS6Pj4/XwYMHJSn9EZ/FihVT6dKlJUlbt27Ncrt///03wzaukpOfMb8U+gDio48+UmRkZPpLktavX59hWeZXuXLldMMNNygxMTH9jqPAVVJs0pznpCWXktgmz0mdJkq+AdbWBQAAALihkydPXvcyglWrVkmSqlevLklq27at/Pz8NG/ePO3atcvhfQUGBkpy7LKMVatWadOmTVct//rrr5WQkKBKlSqpZs2a6ctbtbJfTpPV4y5N00xfnjbOVXLyM+aXQh9AxMbGav/+/ekvwzCUkJCQYVnmV0xMjIKDg9WnTx+XneYDD5cQJ03tIm38TjK8pDbvSVGjJQ86xQ0AAADIT5MnT9bNN9+sCRMm6NSpUxnWxcbGavjw4Zo8ebIkqU+fPpKk8uXL68UXX5TNZlOrVq20dOnSDNuZpqm1a9fq6aefzvCUiNKlSyskJETHjx/P9gyHND4+Purdu7cOHDiQvmzFihUaPny4JGngwIEZzjZ4+eWX5ePjo9mzZ+v9999XamqqJPtZGy+88IK2bNmiokWL6umnn87hbyhn0v6Bfd26dYqPj3fpvhxV6O8B8eKLL6p3796S7H84IyMj1ahRI82YMSPL8YZhKDAwMP20GuAqcUelKZ2lmC2SbxGp09dSzdZWVwUAAAC4NcMw9Pfff+uJJ57QE088oSpVqqh06dI6c+aMDhw4kH7ZxcCBA/Xggw+mb/fWW2/p6NGjmjx5su6++26VLVtWERERSkxM1N69e9Nv9vjCCy9k2Ffnzp319ddfq0GDBrrxxhvTb/KYOcR48sknNWfOHFWrVk033nijLl68qB07dkiS7r//fvXv3z/D+Jtvvln/+c9/9Mwzz2jgwIEaN26cIiIitGvXLsXGxsrf319TpkxR2bJlnf47vFKDBg1UvXp17dq1SxEREapRo4b8/Px08803a/z48S7dd3YKfQBRtGhRFS1aNP19r169VLNmTVWqVMnCquCxYv61hw9xR6SgMlL36VKFq58ZDAAAACCj/v3766abbtL8+fO1cuVKHT58WJs2bZKPj48qVaqkxo0b6/HHH7/qcZs+Pj767rvv1K1bN02YMEF//vmnNm7cqOLFi6tGjRpq3LixOnXqdNU9Fz766COFhIRo9uzZ2rx5s2w2W5Z1lSpVSmvXrtVrr72m+fPn69SpU6pZs6b69u2rAQMGZHkjz6efflo33XST3nvvPa1cuVKbNm1S6dKl1a5dOw0ZMiTbR3Q6k5eXl3755RcNHTpUy5Yt09q1a5WSkuLy/V5LoQ8gMps4caLVJcBT7fldmv6olHROKlVD6vGDVJwgCwAAAHCEr6+v7r77bt1999252r5NmzZq06aNw+ODg4M1fvx4h84GKFu2rL766qsc1dO0aVM1bdrU4fGTJk3SpEmTrlr+xhtvaOTIkdlu17t37/Sz+jOrXr26Zs6c6XANrkYAcQ0XLlzQypUrtXPnTp07d04hISGqUaOGmjZtmu0zWFFIbZwszX1BSk2WKt0hdZ0sBRa3uioAAAAAcBsEEFlISkrSG2+8of/+97+6cOHCVeuDgoL03HPP6Y033pCfn58FFcJtmKa0dIz0x7v293U7Sx3+K/n4W1sXAAAAALgZAohMUlJS1L59ey1cuFCmaapixYqqVauWwsLCFBMTo+3bt+vw4cN655139Ndff+mXX36Rt7e31WXDCslJ0tznpc3T7O+bvSzdPYwnXQAAAABAFgggMvm///s/LViwQGFhYfr444/VsWPHDI9UMU1Ts2bN0gsvvKCFCxfqiy++cPnjU+CGLsZKM3pK+5ZJhrfU7gOpYW+rqwIAAAAAt8U/1Wby7bffyjAM/fLLL+rUqVOG8EGyP66lU6dOmjt3rkzT1DfffGNRpbBM7CHp6/vs4YNfsP1JF4QPAAAAQIEyYsQImaapESNGWF1KgcEZEJls27ZNtWvXVoMG1350YoMGDXTDDTdo69at+VQZ3MKxzdKUh6Xz0VJwWanHDKlcPaurAgAAAAC3RwCRSUpKinx9fR0a6+vrq9TUVBdXBLexa6E0o5dkuyCVri31mCkVC7e6KgAAAADwCFyCkUnVqlW1ZcsW7d+//5rj9u3bpy1btqhq1ar5Uxis9dckaWoXe/hQ5S6p32+EDwAAAACQAwQQmXTu3FkpKSnq0KGD/v777yzHbN68WQ888IBSU1P18MMP53OFyFepqdKikdLcFyQzRarXXerxgxRQ1OrKAAAAAMCjcAlGJgMGDNCMGTP0zz//qH79+rrjjjt0ww03qEyZMjp+/Li2bt2qFStWyDRN3XTTTRowYIDVJcNVkhOln/tLW36wv7/rVan5q1KmG5MCAAAAAK6PACKTIkWK6Pfff9dTTz2ln376ScuXL9fy5ctlGIZM05RkfxJGx44d9dlnnykwMNDiiuESF89I3z8iHVgheflI938k1X/E6qoAAAAAwGMRQGShVKlS+uGHH7R7924tXLhQO3fu1Pnz5xUcHKwaNWooKiqKez8UZGcOSFM6Syd3SH4hUpfvpKp3W10VAAAAAHg0AohrqFatmqpVq2Z1GchPRzbYbzZ54bgUUt7+pIuyN1pdFQAAAAB4PAIIIM2O+dIPfSVbvBRWV+oxQwotb3VVAAAAAFAgEEAAkrR2gjT/FclMlareK3WeJAWEWl0VAAAAABQYhT6A8Pb2ztP2hmEoOTnZSdUg36WmSouGS6s+tr+v31Nq96Hk7WttXQAAAABQwHhZXYDVTNPM0ys1NdXqHwG5ZUuQfuhzOXy4e5jU/mPCBwAAAMBic+fOVZcuXRQREaGAgACVKFFCDRs21Ouvv66YmBin7mvTpk0aMWKEfv75Z6fOmxdLly7VyJEjtWLFCqtLcapCfwaEZD+LoWbNmurZs6ceeughBQcHW10SXC3+tDStm3ToT8nLV+rwX6leF6urAgAAAAq1s2fPqkuXLvrtt98kSaVLl1bdunUVFxenjRs3asOGDfroo4/05Zdf6uGHH3bKPjdt2qSRI0eqV69eeuCBB5wyZ14tXbpUb775pgYPHqw2bdpYXY7TFPoA4sMPP9SUKVO0fv16DRs2TG+99ZYefPBB9ezZUy1atJCXV6E/SaTgOb3X/pjNU7sl/6JS18lSlTutrgoAAAAo1JKSktSyZUutW7dOlStX1qeffqr77rtPhmFIkg4dOqRXXnlF33//vbp16yZvb2917NjR4qqRE4X+0/ULL7ygtWvXavv27RoyZIjKlCmjKVOmqHXr1qpQoYJefvllbdiwweoy4SyH10tftrSHD0XDpX6/ET4AAAAAbuCNN97QunXrVK5cOS1fvlytW7dODx8kKTw8XNOmTVOfPn2Umpqqxx57zOmXY8C1Cn0AkaZGjRoaPXq09u7dq2XLlqlfv35KTEzUhx9+qEaNGqlOnTp69913dejQIatLRW5t+580qZ0Uf1IqV096bJFUprbVVQEAAACFXmxsrD755BNJ0nvvvaeKFStmO/ajjz5SqVKlMmwjSb1795ZhGJo0aVKW240YMUKGYWjEiBHpyypXrqw+ffpIkr755hsZhpH+at68efq45s2byzAMLV26VGvXrlXbtm1VokQJBQUFqUmTJtneP+LK7bKSVc2GYWjkyJGSpHfffVfe3t7pNfXu3Tvb34snIIDIwh133KEvvvhC0dHRmjlzpu6//37t2bNHQ4cOVZUqVfTss89aXSJy6s/PpemPSMkXpepRUu95UkhZq6sCAAAAIGnevHk6f/68SpUqpc6dO19zbEhIiHr06CFJmjFjRp7226hRI1WvXl2SVKZMGTVt2jT9Vbdu3avGL1++XM2aNdOyZctUtWpVFS1aVKtXr9aDDz6oDz74IE+1pGnatKnCw8MlSRUqVMhQU40aNZyyD6sQQFyDn5+fOnbsqJ9//lkLFy5UeHi4UlNTtXPnTqtLg6NSU6Vfh0q/DpZkSg37SF2nSf7caBQAAABwF6tWrZIkNWnSRL6+138q3Z132i+j3rlzp06dOpXr/c6cOVNDhw6VJLVu3VorVqxIf3388cdXjX/zzTf10EMPKTo6WuvWrdORI0f0n//8R5I0ePBgbd68Ode1pFmxYoX69u0rSXrkkUe0bNmy9JrSavVUhf4mlNcSExOjadOm6bvvvtOmTZtkmqaCg4N1xx13WF0aHGG7KP34uLRtrv19ixFS0xelK64jAwAAACxnmpItPv/2l5pq31+St5TXm+77FnHK36+PHDkiSapatapD468cd+TIEZUsWTLPNTiiRIkSmjhxogICAiTZL5d47rnntHTpUv3444/64IMP9M033+RLLZ6IACKTixcv6qefftJ3332nxYsXKzk5Wd7e3oqKilLPnj314IMPKjAw0OoycT0XTkrTukqH10neftIDn0l1O1ldFQAAAHA1W7z0dvl8252XpGLOmmzoUckvKM/TnDt3TpIUFOTYXFeOS9s2P/Tr1y89fLhS//799eOPP6Y/PhRZI4CQZJqmFi1apMmTJ+unn37ShQsXZJqm6tevr549e6pbt24KCwuzukw46tQeaXJH6cw+KaCY1HWqVLmp1VUBAAAAyEZISIgk6cKFCw6Nv3Jc2rb5oXbtrG9in7Y8JiZGcXFxCg0NzbeaPEmhDyAGDRqkqVOnKjo6WqZpKjw8XM8++6x69uyZ7R8uuLGDa+xnPlw8LRWLkHrMkkp79o1aAAAAUMD5FrGfSZBPUlNTFXfunEJDQuTljEswnKBChQqSpD179jg0/spxadvmhzJlylx3+blz5wggslHoA4j3339fhmGoZs2aeuSRR3TXXXfJMAydOXMm/UYo19OkSRMXVwmH/Puz9OMTUkqiVL6+1H2GFJz1fyAAAAAAt2EYTrmMwWGpqZJvin2feQ0gnKRJkyb673//q1WrVik5OVk+Ptf+qLps2TJJUvXq1dPv/2BcuheFaZpZbuPo2RXXcuLEiesuv/KMjPyoyZMU+gAizY4dO/T666/neDvDMJScnOyCiuAw05RW/1daMEySKdVoLXX6Kn//Iw4AAAAg19q0aaOgoCCdPHlSM2fOVLdu3bIde+7cOU2ZMkWS1KVLl/TlafeFyC4k2L17d5bLjRzcRHPbtm3XXB4WFpbh7If8qMmTFPoAIiIiosA2t1BITZF+fVVa+4X9faPHpdbvSl7e1tYFAAAAwGHFihXTM888o7Fjx+rll19Ws2bNVLFixSzHvvDCCzp58qSKFi2qZ555Jn15ZGSkJGndunVXbXP48OFsbxCZ9pCBixcvXrfOr776SsOHD5e/v3+G5Z9++qkkKSoqKsPyK2t6+OGHM6xbv359to/tzElNnsQ9zrex0P79+7Vv3748vWCRpAvS9Ecuhw9Ro6U24wgfAAAAAA/05ptvqkGDBjp27JjuvPNO/frrrxkuXTh8+LC6d++uiRMnyjAMffHFFypbtmz6+tatW0uSfv75Z82bNy99+bFjx9SjR49sz1y/MiSIj7/241BPnTqlfv36pV86YZqmPv30U/3444/y9vbWgAEDMoxPq2nChAlau3Zt+vJdu3apV69e2V5qklbT2rVrC9QZ94U+gICHOn9cmtRO2jFP8vaXOn8jNXnOKc8gBgAAAJD//P39tXjxYrVo0UL79u1T69atFRYWpkaNGqlWrVqKiIjQtGnTFBwcrClTplx1RkHt2rXVr18/JScnq23btoqMjFT9+vUVERGh48ePq3///lnut0GDBqpevbr27duniIgINWnSRM2bN9eLL7541djhw4dr5syZKleunBo1aqSKFSvqmWeekWmaGjNmjG6++eYM4++77z61aNFCZ8+eVePGjVWrVi3VrVtXtWrVUqlSpdS5c+csa4qKilLx4sX1559/qnLlyrrjjjvUvHlzvfPOO7n63boLAgh4npO7pC9bSEc3SIElpF5zpDoPWF0VAAAAgDwqVqyYFi5cqJ9//lmdOnWSv7+//v77b0VHR6tevXoaOnSodu3ale09Ij7//HO9+eabqlq1qo4cOaITJ07oySef1OrVq1WsWLEst/Hy8tIvv/yiTp06ydvbW2vXrtUff/yhTZs2XTW2WbNmWr58ue644w7t3r1bZ86c0e23364ff/xRgwYNumq8YRj66aefNGDAAJUvX1779u3ThQsXNGTIEC1YsEC+vr5Z1hQaGqpff/1VLVq0UGJiolavXq0//vhD27dvd/h36Y4K/T0g4GEOrJKmdZMSYqXile2P2SxVzeqqAAAAADhRhw4d1KFDhxxv5+Pjo9dffz3LBwyMGDFCI0aMyHK76tWra+bMmQ7t49Zbb81wicf1BAcH6/3339f7779/1bpJkyZp0qRJWW53yy23aObMmQoNDc3741LdBAEEPMeWWdJPT0kpSVLFRlK376WgUlZXBQAAAABwAAEE3J9pSsvfk34fbX9fq53U8UvJN9DaugAAAAAADiOAgHtLTpLmviBtnmp/f/szUtQonnQBAAAAAB6mYFxI4uHmzZunFi1aqESJEgoKClKDBg308ccfKzU11erSrBV/WvruQXv4YHhLbd+X7nub8AEAAAAAPBBnQFjsnXfe0ZAhQyTZn/UaHByszZs36/nnn9eiRYv0008/FZgbjuTIqT3S1IelU7slvxCp8ySpegurqwIAAABQCC1dutTqEgqEQvjJ1n2sXr1aQ4cOlZeXl6ZOnao9e/Zo8+bN2rBhg8LCwjRnzhx98MEHVpeZ//avsD9m89RuKbSi1O83wgcAAAAA8HAEEBYaPXq0TNPUY489luE5tvXq1UsPHt555x3ZbDarSsxfpin9+bn0TXvp4mmpfH3p8cVSWB2rKwMAAAAA5BEBhEXi4uK0aNEiSVK/fv2uWt+5c2eFhobq1KlTWrJkSX6Xl/8Sz9sfsfnrYMlMkW7sJPWeJ4WUtboyAAAAAIATEEBYZOPGjUpKSlJAQIAaNGhw1XpfX181atRIkrRmzZr8Li9/HfxT+vwO6e/v7TebbDXG/phNvyJWVwYAAAA4jWmaVpcAOMRVf1YJICyya9cuSVJERIR8fLK+F2hkZGSGsQVK4jmVOL9T3j8/IX3dSjqzz36/h15zpMb9JcOwukIAAADAKdJuKp+SkmJxJYBj0v6sOvuBCDwFwyJnzpyRJBUvXjzbMWnr0sZmlpiYqMTExPT3cXFxkiSbzebW943w+v1N+a7+j5pdsSz1pm5KaTlaCigquXHthUnanyF3/rME+uQp6JP7o0eegT55BvqUNcMwFB8fryJFrD/LN+1ft03TVGpqqsXVIDtW9ik+Pl7GpX8Uvt6xnJNjnQDCIgkJCZIkPz+/bMf4+/tLki5evJjl+jFjxmjkyJFXLV+wYIFb/IctO5HHT6qupCTvIMWE1tOeMvfprHdl6feVVpeGLCxcuNDqEuAA+uQZ6JP7o0eegT55BvqUUdGiRZWSkiIfHx+n/6tybp07d87qEuCA/O5TamqqTpw4oePHj2vHjh3XHR8fH+/w3AQQFgkICJAkJSUlZTsm7eyGwMDALNcPGTJEAwYMSH8fFxen8PBwRUVFKTQ01InVOlliM8XbRmrhstVq2bKlyvr6Wl0RsmCz2bRw4UK1bNlSvvTIbdEnz0Cf3B898gz0yTPQp6wlJSXp0KFDOnPmjEqUKCE/P7/0f2HOb6Zp6sKFCwoKCrKsBlxffvfJNE0lJSXpzJkz8vb21q233nrNfzBPk3YmviMIICxyvcsrrlyX3WUa/v7+6WdJXMnX19e9/2PvWyL9Mgu3rxX0yEPQJ89An9wfPfIM9Mkz0KeMfH19FRERoZMnTyo6OtrSWkzT1MWLFxUYGEgA4cas6lNQUJDKlSvn8Fn1OTnOCSAsUr16dUnSwYMHlZycnOWNKPfu3ZthLAAAAADPVaRIEUVERCg5OVnJycmW1WGz2bRs2TLdeeedhERuzIo++fj4ZPuQBKfM77KZcU3169eXr6+vEhIStGHDBt16660Z1ttsNq1bt06SdNttt1lRIgAAAAAXcPWHvOvx9vZWcnKyAgICCCDcWEHsk3vc/aQQCg0NVYsWLSRJX3311VXrZ86cqbi4OJUsWVLNmzfP5+oAAAAAAHAuAggLvfbaazIMQ19++aWmTZuWvnzz5s3pN5d85ZVXHLrxBwAAAAAA7owAwkJNmzbVqFGjlJqaqu7du6tq1aqqV6+eGjRooJiYGLVt21Yvv/yy1WUCAAAAAJBnBBAWe+211zR37lzdc889OnXqlHbv3q26detq/Pjxmj17try9va0uEQAAAACAPOMmlG6gXbt2ateundVlAAAAAADgMpwBAQAAAAAAXI4AAgAAAAAAuByXYBQgpmlKkuLi4iyu5PpsNpvi4+MVFxdXYJ5pW9DQI89AnzwDfXJ/9Mgz0CfPQJ/cHz3yDJ7Sp7TPn2mfR6+FAKIAOXfunCQpPDzc4koAAAAAAIXJuXPnVLRo0WuOMUxHYgp4hNTUVB09elQhISEyDMPqcq4pLi5O4eHhOnTokEJDQ60uB1mgR56BPnkG+uT+6JFnoE+egT65P3rkGTylT6Zp6ty5cypfvry8vK59lwfOgChAvLy8VLFiRavLyJHQ0FC3PphAjzwFffIM9Mn90SPPQJ88A31yf/TIM3hCn6535kMabkIJAAAAAABcjgACAAAAAAC4HAEELOHv76833nhD/v7+VpeCbNAjz0CfPAN9cn/0yDPQJ89An9wfPfIMBbFP3IQSAAAAAAC4HGdAAAAAAAAAlyOAAAAAAAAALkcAAQAAAAAAXI4AAgAAAAAAuBwBBPJs3rx5atGihUqUKKGgoCA1aNBAH3/8sVJTU3M13+rVq9WhQweVLl1agYGBuuGGGzRq1CglJCQ4ufLCxVl9GjFihAzDuOZr+/btLvopCq59+/ZpwoQJevzxx1WvXj35+PjIMAyNHj06T/NyPDmPs3vEseR8pmlqxYoVGjRokG6//XYVK1ZMfn5+Kl++vDp27KglS5bkem6OJedxRZ84nlzj559/1pNPPqmGDRuqXLly8vPzU7FixdSkSRN99NFHSkpKytW8HE/O4+wecSzlj2HDhqX/PnP79wiPPY5MIA/GjBljSjIlmZGRkeZNN91kenl5mZLM9u3bmykpKTmab/Lkyaa3t7cpyaxQoYJZv35909fX15RkNmrUyLxw4YKLfpKCzZl9euONN0xJZnh4uNm0adMsXwcOHHDhT1MwvfDCC+k9uvI1atSoXM/J8eRczu4Rx5LzLVq0KL0vXl5eZo0aNcz69eubwcHB6cuHDRuW43k5lpzLFX3ieHKNpk2bmpJMf39/s0qVKuYtt9xiVqhQIb1PDRs2NM+cOZOjOTmenMvZPeJYcr2tW7eafn5+efp7hCcfRwQQyLVVq1aZhmGYXl5e5tSpU9OXb9q0yQwLCzMlmePGjXN4vn379pn+/v6mJHPs2LFmamqqaZqmuX//frNmzZqmJPOZZ55x+s9R0Dm7T2n/Y3rjjTdcUG3hNWrUKLNdu3bmm2++ac6fP9/s2LFjnj7ccjw5n7N7xLHkfAsXLjSrVatmfvrpp+bp06fTlycmJppDhgxJ/8ve3LlzHZ6TY8n5XNEnjifXmDhxorlkyRIzKSkpw/LVq1ebFStWNCWZ/fv3d3g+jifnc3aPOJZcKzU11WzWrJkZFBRk3nPPPbn6e4SnH0cEEMi1Nm3amJLMJ5544qp1U6ZMMSWZJUuWvOo/iNnp37+/KcmMioq6at3KlStNSaavr68ZHR2d59oLE2f3if8x5Y9evXrl6cMtx5Pr5bVHHEvOd/bsWdNms2W7vnXr1ulnfjmKY8n5XNEnjqf8N2PGDFOSWb58eYe34XjKX7npEceSa02YMMGUZL777ru5/nuEpx9H3AMCuRIXF6dFixZJkvr163fV+s6dOys0NFSnTp1y6FpO0zT1008/ZTtfkyZNVKtWLdlsNs2ePTuP1Rcezu4TPAPHEwqr0NBQ+fj4ZLu+ZcuWkqSdO3c6NB/Hkms4u0+wRq1atSRJ8fHxDo3neMp/Oe0RXOvEiRMaPHiwbrjhBr300ku5mqMgHEcEEMiVjRs3KikpSQEBAWrQoMFV6319fdWoUSNJ0po1a64738GDB3Xs2DFJUtOmTbMck7bckflg5+w+XWnJkiXq3Lmz7rnnHnXq1Eljx45VdHS0U+pG3nA8eRaOpfyTdmOuwMBAh8ZzLFkjp326EsdT/lm9erUkZfn3i6xwPOW/nPboShxLzvfSSy/p9OnT+vTTT+Xr65urOQrCcZR9/Axcw65duyRJERER2f4rRmRkpBYvXpw+1pH5/P39Vb58+Wznu3Isrs/ZfbrSsmXLMryfNWuWRowYoU8//VS9e/fOVb1wDo4nz8KxlD9M09TMmTMlZf+Xtsw4lvJfbvp0JY4n10pJSdGxY8c0Z84cvfrqqwoKCtKYMWMc2pbjKX/kpUdX4lhyrsWLF2vKlCl65JFHdNddd+V6noJwHHEGBHLlzJkzkqTixYtnOyZtXdpYR+YrVqyYDMPI83ywc3afJKlcuXIaOnSo1q1bp1OnTik+Pl4rV65U69atdfHiRfXt21dz587Ne/HINY4nz8CxlL8mTJigjRs3ys/PTy+++KJD23As5b/c9EnieHK18ePHyzAM+fj4KDw8XM8884zuvfde/fnnn7r11lsdmoPjybWc0SOJY8kVEhIS9NRTT6lo0aJ677338jRXQTiOCCCQK2mnR/r5+WU7xt/fX5J08eLFfJ8Pdq74vT755JN66623dMstt6hEiRIKDAxUkyZN9Msvv+jBBx+UaZp66aWXZJpm3n8A5ArHk2fgWMo/GzZs0AsvvCBJGj16tKpWrerQdhxL+Su3fZI4nlytQoUKatq0qW699VaFhYVJsp+iP23aNKWkpDg0B8eTazmjRxLHkiuMHj1au3fv1ltvvZXem9wqCMcRAQRyJSAgQJKUlJSU7ZjExERJjl3D6ez5YJefv1fDMPTOO+9Ikvbs2aO///47T/Mh9ziePBvHknPt27dP7dq1U0JCgrp3766BAwc6vC3HUv7JS5+uhePJOTp37qwVK1ZozZo1io6O1p9//qnKlSvr7bff1rPPPuvQHBxPruWMHl0Lx1LubNu2TePGjVODBg309NNP53m+gnAcEUAgVxw5tceR0/8zzxcbG5ttopqT+WDn7D5dT40aNVSiRAlJ0u7du/M8H3KH48nzcSw5R3R0tFq2bKljx46pbdu2mjRpUranrGaFYyl/5LVP18Px5Hy33Xab5s2bJ39/f33xxRc6cODAdbfheMpfuenR9XAs5Vz//v2VnJyszz77TF5eef/oXRCOIwII5Er16tUl2e/EmpycnOWYvXv3ZhjryHyJiYk6evRonueDnbP75Ii0u/pmtz+4HsdTwcCxlDenT59Wy5YttWfPHt11112aOXNmju86zrHkes7okyM4npyvfPnyuvnmm5WamqrNmzdfdzzHU/7LaY8cwbGUMxs3bpRhGGrfvr3Kli2b4TV9+nRJ0rvvvquyZcumP5nuWgrCcUQAgVypX7++fH19lZCQoA0bNly13mazad26dZLsCez1REREqGzZspKklStXZjkmbbkj88HO2X26npMnT+r48eOSpIoVK+Z5PuQOx5Pn41jKm/Pnz6tNmzbasmWLGjVqpLlz5+bqVFSOJddyVp+uh+PJddI+hDryYZTjyRo56dH1cCzlTkpKimJiYq56pd3P4fz584qJidGJEyeuO1dBOI4IIJAroaGhatGihSTpq6++umr9zJkzFRcXp5IlS6p58+bXnc8wDD344IPZzrdq1Spt375dvr6+at++fd6KL0Sc3afr+eCDD2SapooWLepQigvX4HjyfBxLuZeYmKgOHTpozZo1qlOnjn799VeFhITkai6OJddxZp+uh+PJNfbv35/+r+r16tW77niOp/yX0x5dD8dSzqVdKpHVq1evXpKkUaNGyTRN7d+//7rzFYjjyARyacWKFaZhGKaXl5c5derU9OWbNm0yw8LCTEnmu+++m2GbDz/80KxUqZLZpUuXq+bbu3ev6efnZ0oyx44da6amppqmaZr79+83a9asaUoyn376adf+UAWQM/u0ZcsW8+mnnza3bNmSYfnFixfNt956y/Ty8jIlmW+//bbrfqBColevXqYkc9SoUdmO4XiyVl56xLHkGsnJyeYDDzxgSjKrVq1qHj161KHtOJbyl7P7xPHkGuvXrzeHDx9u7tmz56p18+fPN2vVqmVKMtu0aZNhHcdT/nF2jziW8te1/h5RkI8jAgjkyejRo01JpiQzMjLSvOmmm9L/49S2bVszOTk5w/g33njDlGTeddddWc73zTffpG9foUIFs379+qavr68pyWzYsKF5/vz5fPipCh5n9Wnjxo3p85QuXdps2LCh2bBhQ7NIkSLpy/v165f+H0I4bsWKFWbJkiXTX/7+/qYks0iRIhmWHzx4MH0bjqf85cwecSy5xtSpU9N/f9WrVzebNm2a5atTp04ZtuNYyl/O7hPHk2ssWbIk/fdXtmxZ85ZbbjFvuukms1ixYunLGzVqZJ44cSLDdhxP+cfZPeJYyl/XCiAK8nHkk4uTJoB0r732murVq6cPP/xQf/31l6Kjo1W3bl316dNHzz77rLy9vXM036OPPqpq1appzJgxWrVqlbZu3arIyEh169ZNgwcPTn/0DHLGWX2qXLmyRo0alX56144dO5SUlKQyZcqoTZs2euyxx9SqVSsX/zQFk81m06lTp65aHh8fr/j4+PT3OXmWN8eTczmzRxxLrpH26DFJ2rVrl3bt2pXluEqVKuVoXo4l53J2nzieXKNevXr66KOPtHjxYv3777/avn27kpKSVLJkSTVu3FgPP/ywHnnkEfn45OzjBMeT8zi7RxxLnsOTjyPDNLN5fgcAAAAAAICTcBNKAAAAAADgcgQQAAAAAADA5QggAAAAAACAyxFAAAAAAAAAlyOAAAAAAAAALkcAAQAAAAAAXI4AAgAAAAAAuBwBBAAAAAAAcDkCCAAAAAAA4HIEEAAAAAAAwOUIIAAAAAAAgMsRQAAAAAAAAJcjgAAAAAAAAC5HAAEAAAAAAFyOAAIAAAAAALgcAQQAAAAAAHA5AggAAAAAAOByBBAAAAAAAMDlCCAAAAAAAIDLEUAAAAAAAACXI4AAAAAAAAAuRwABAAAAAABcjgACAAAAAAC4HAEEAAAAAABwOQIIAAAAAADgcgQQAAAAAADA5XysLgDOk5qaqqNHjyokJESGYVhdDgAAAACggDNNU+fOnVP58uXl5XXtcxwIIAqQo0ePKjw83OoyAAAAAACFzKFDh1SxYsVrjiGAKEBCQkIk2RsfGhpqcTXXZrPZtGDBAkVFRcnX19fqcpAFeuQZ6JNnoE/ujx55BvrkGeiT+6NHnsFT+hQXF6fw8PD0z6PXQgBRgKRddhEaGuoRAUSRIkUUGhrq1gdTYUaPPAN98gz0yf3RI89AnzwDfXJ/9MgzeFqfHLkNADehBAAAAAAALkcAAQAAAAAAXI4AAgAAAAAAuBwBBAAAAAAAcDkCCAAAAAAA4HIEEAAAAAAAwOUIIAAAAAAAgMsRQAAAAAAAAJcjgAAAAAAAAC5HAAEAAAAAAFyOAAIAAAAAALgcAQQAAAAAAHA5AggAAAAAAOByBBAAAAAAAMDlCCAAAAAAAIDLEUAAAAAAAACXI4AAAAAAAAAuRwABAAAAAABcjgACAAAAAAC4HAEEAAAAAABwOQIIAAAAAADgcgQQAAAAAADA5QggAAAAAACAyxFAAAAAAAAAlyOAAAAAAAAALkcAAQAAAAAAXI4AAgAAAAAAuFyhDSDmzZunFi1aqESJEgoKClKDBg308ccfKzU1NVfzrV69Wh06dFDp0qUVGBioG264QaNGjVJCQoLDcyxatEiGYcgwDLVo0SJXdQAAAAAA4I4KZQDxzjvvqG3btlq8eLGKFy+uatWqafPmzXr++ef14IMP5jiEmDJlipo1a6Y5c+bI399ftWvX1u7duzV8+HDdeeedio+Pv+4cCQkJevrpp3P7IwEAAAAA4NYKXQCxevVqDR06VF5eXpo6dar27NmjzZs3a8OGDQoLC9OcOXP0wQcfODzf/v371a9fP6WkpGjs2LE6dOiQNmzYoF27dqlmzZpat26dXnnllevOM3r0aO3evVvt27fPy48HAAAAAIBb8nFk0Jtvvun0HQ8fPtzpczpi9OjRMk1Tjz/+uLp165a+vF69evrggw/Uo0cPvfPOO3rhhRfk6+t73fnGjRunxMRERUVFadCgQenLK1WqpK+//lpNmzbVF198oddff11hYWFZzrFt2zaNGzdOrVu31oMPPqg5c+bk/QcFAAAAAMCNOBRAjBgxQoZhyDTNPO3MMIz0760IIOLi4rRo0SJJUr9+/a5a37lzZz399NM6deqUlixZoqioqGvOZ5qmfvrpp2zna9KkiWrVqqXt27dr9uzZeuKJJ7Kc48knn5SXl5c++eQTLVu2LDc/GgAAAAAAbs2hAEKSwsPD1adPnzzv8Ouvv9bhw4fzPE9ubNy4UUlJSQoICFCDBg2uWu/r66tGjRpp8eLFWrNmzXUDiIMHD+rYsWOSpKZNm2Y5pmnTptq+fbvWrFmTZQDx1Vdfafny5Ro5cqQiIyMJIAAAAAAABZLDAURERITeeOONPO9w0aJFlgUQu3btkmT/WXx8sv7RIyMjtXjx4vSxjszn7++v8uXLZzvflWOvdOLECQ0ePFjVqlXT4MGDHfoZAAAAAADwRA4HEM6S18s48uLMmTOSpOLFi2c7Jm1d2lhH5itWrFiGy0scne+ll17S6dOnNXXqVPn7+193f5klJiYqMTEx/X1cXJwkyWazyWaz5Xi+/JRWn7vXWZjRI89AnzwDfXJ/9Mgz0CfPQJ/cHz3yDJ7Sp5zU51AAcebMmWzPGMip3377TcnJyU6ZK6cSEhIkSX5+ftmOSQsCLl686NL5Fi9erClTpqhTp05q1arVdfeVlTFjxmjkyJFXLV+wYIGKFCmSqznz28KFC60uAddBjzwDffIM9Mn90SPPQJ88A31yf/TIM7h7n+Lj4x0e61CqULRo0VwXk1lQUJDT5sqpgIAASVJSUlK2Y9LOKAgMDHTZfAkJCXrqqacUHBysDz/88PqFZ2PIkCEaMGBA+vu4uDiFh4crKipKoaGhuZ43P9hsNi1cuFAtW7Z06GkjyH/0yDPQJ89An9wfPfIM9Mkz0Cf3R488g6f0Ke1MfEc4fFrDrFmzdP/991/zX/vdnSOXVzhymUbm+WJjY2WaZpaXYWQ137vvvqvdu3dr3LhxqlixouM/QCb+/v5ZXrrh6+vr1n9Ar+RJtRZW9Mgz0CfPQJ/cHz3yDPTJM9An90ePPIO79ykntXk5OrBz584qV66cnnrqKa1YsSJXhVmtevXqkuxPr8juMpC9e/dmGOvIfImJiTp69KjD823cuFGSNHbsWJUtWzbD64UXXpAkLV++PH3ZoUOHHPnxAAAAAABwWw4HECVKlNCZM2c0YcIE3XXXXYqMjNQbb7zh0NMi3EX9+vXl6+urhIQEbdiw4ar1NptN69atkyTddttt150vIiJCZcuWlSStXLkyyzFpy7Oa78SJE4qJicnwSjt9JSkpKX1ZSkqKYz8gAAAAAABuyuEAIjo6WrNnz1bHjh3l7++v/fv3a/To0apVq5YaN26sTz/9VKdOnXJlrXkWGhqqFi1aSJK++uqrq9bPnDlTcXFxKlmypJo3b37d+QzD0IMPPpjtfKtWrdL27dvl6+ur9u3bpy//+eefZZpmlq+JEydKku699970ZZUrV87FTwsAAAAAgPtwOIDw8fHR/fffrxkzZigmJkZffvml7rrrLhmGoTVr1ui5555T+fLl9cADD2jWrFnXvDGjlV577TUZhqEvv/xS06ZNS1++efPm9Bs6vvLKKxnudTF+/HhVrlxZXbt2vWq+QYMGyc/PTwsWLNC4cePSHzN64MAB9e3bV5L02GOPpZ8pAQAAAABAYeRwAHGlkJAQ9e3bV7///rsOHjyod955RzfeeKNsNpvmzJmjhx9+WGFhYXryySe1fPlyZ9ecJ02bNtWoUaOUmpqq7t27q2rVqqpXr54aNGigmJgYtW3bVi+//HKGbWJjY3XgwAFFR0dfNV+VKlU0YcIEeXl56ZVXXlF4eLgaNGig6tWra8eOHWrYsKHGjRuXXz8eAAAAAABuKVcBxJXKly+vV155RZs3b9bff/+tgQMHqkKFCjp79qwmTJig5s2bq0qVKnr99dedUa9TvPbaa5o7d67uuecenTp1Srt371bdunU1fvx4zZ49W97e3jma79FHH9Xy5cvVrl07Xbx4UVu3blVkZKRGjBihFStWWProUQAAAAAA3IHDj+F0xI033qixY8fq3Xff1dKlSzV58mRNmzZNBw4c0Ntvv61Ro0Y5c3d50q5dO7Vr186hsSNGjNCIESOuOaZJkyaaO3dunuvq3bu3evfuned5AAAAAABwJ3k+AyIrx48f199//62///5biYmJrtgFAAAAAADwIE47A+LChQv66aefNHnyZP3+++9KSUmRaZry9fVVmzZt1LNnT2ftCgAAAAAAeJg8BRCpqan67bffNHnyZM2ZM0fx8fHpT4G4/fbb1bNnT3Xp0kUlSpRwSrEAAAAAAMAz5SqAWLt2rSZPnqzp06fr5MmT6aFDlSpV9Mgjj6hnz56qVq2aUwsFAAAAAACey+EAYs+ePZo8ebKmTJmiPXv2SJJM01SxYsX08MMPq2fPnmratKnLCgUAAAAAAJ7L4QCiRo0akpR+X4fWrVurZ8+euv/+++Xn5+eyAgEAAAAAgOdzOIAwTVO33Xabevbsqa5du3JfBwAAAAAA4DCHA4gdO3aoevXqrqwFAAAAAAAUUF6ODiR8AAAAAAAAueVQAPHtt9/qt99+c8oOf/vtN3377bdOmQsAAAAAAHgGhwKI3r1766233nLKDkePHq0+ffo4ZS4AAAAAAOAZHL4EAwAAAAAAILccvgnlP//8o3vuuSfPO/znn3/yPAcAAAAAAPAsDgcQZ8+e1dKlS52yU8MwnDIPAAAAAADwDA4FEEuWLHF1HQAAAAAAoABzKIC46667XF0HAAAAAAAowLgJJQAAAAAAcDkCCAAAAAAA4HIEEAAAAAAAwOUIIAAAAAAAgMsRQAAAAAAAAJcjgAAAAAAAAC5HAAEAAAAAAFyOAAIAAAAAALgcAQQAAAAAAHA5H1fvoG/fvpKk+vXrq2/fvgoKCnL1LgEAAAAAgJtx+RkQkyZN0jfffKMXX3xRFStW1KuvvqojR464ercAAAAAAMCNuDyAePTRR/Xoo48qKipKkjR27FhFRka6ercAAAAAAMCNuPwSjEmTJqV/b5qmtmzZotWrV7t6twAAAAAAwI24PIC4kmEYqlu3rurWrZufuwUAAAAAABbjKRgAAAAAAMDlCCAAAAAAAIDLOXQJRtqjNPPCMAx99dVXeZ4HAAAAAAB4HocCiCtvJJlb7hZAzJs3Tx988IE2bNigxMRE1axZU3369NEzzzwjL6+cnxiyevVqvfPOO1q1apXOnz+vKlWqqFu3bho0aJACAgKuGr9z507NmjVLS5Ys0d9//61Tp04pJCRE9erV06OPPqpevXrlqg4AAAAAANyRQwHExIkTXV1HvnrnnXc0ZMgQSVJkZKSCg4O1efNmPf/881q0aJF++umnHH34nzJlinr16qWUlBRVqFBB4eHh2rJli4YPH665c+dq6dKlKlKkSPr4lJQU1axZM/19xYoVdfPNN+vgwYNaunSpli5dqu+//16zZ8/OMrwAAAAAAMDTOBRA9OrVy9V15JvVq1dr6NCh8vLy0uTJk9WtWzdJ0ubNm9WqVSvNmTNHH3zwgQYOHOjQfPv371e/fv2UkpKisWPHauDAgTIMQwcOHFCrVq20bt06vfLKK/rkk0/StzFNU8WKFdOzzz6rPn36KDIyMn3djBkz1Lt3by1YsEDDhg3Te++959xfAAAAAAAAFih05/iPHj1apmnqscceSw8fJKlevXr64IMPJNnPkLDZbA7NN27cOCUmJioqKkqDBg2SYRiSpEqVKunrr7+WJH3xxReKiYlJ38bb21t79+7VqFGjMoQPkvTwww/rjTfekCR9/fXXSk1Nzf0PCwAAAACAm3BKAJGYmKhVq1Zp5syZ+vbbb50xpUvExcVp0aJFkqR+/fpdtb5z584KDQ3VqVOntGTJkuvOZ5qmfvrpp2zna9KkiWrVqiWbzabZs2enLzcMQ8WLF8923qioKEnSmTNndOLEievWAQAAAACAu8tTAJGYmKjBgwerTJkyatasmbp27ao+ffpkGNOvXz+VL19eO3bsyFOhzrBx40YlJSUpICBADRo0uGq9r6+vGjVqJElas2bNdec7ePCgjh07Jklq2rRplmPSljsyX5qEhIT07wMDAx3eDgAAAAAAd5XrACIpKUlRUVF67733ZJqmmjdvrlKlSl017qGHHlJ0dLR++OGHPBXqDLt27ZIkRUREyMcn69tfpF0SkTbWkfn8/f1Vvnz5PM+XZsaMGZKkG2+8UaGhoQ5vBwAAAACAu3LoJpRZ+c9//qPly5erWbNmmj59usqWLatmzZrp5MmTGca1bNlSfn5+WrBggV577bU8F5wXZ86ckaRrXv6Qti5trCPzFStWLP3eD3mZT5K2bNmiTz/9VJL0yiuvXHNsYmKiEhMT09/HxcVJkmw2m8P3sLBKWn3uXmdhRo88A33yDPTJ/dEjz0CfPAN9cn/0yDN4Sp9yUl+uA4gpU6bI19dX06ZNU9myZbMd5+fnp2rVqunAgQO53ZXTpF3a4Ofnl+0Yf39/SdLFixfzfb7Y2Fh17NhRSUlJatOmjXr27HnN8WPGjNHIkSOvWr5gwYIMj/10ZwsXLrS6BFwHPfIM9Mkz0Cf3R488A33yDPTJ/dEjz+DufYqPj3d4bK4DiJ07d6p69erZXnpwpZCQEO3Zsye3u3KagIAASfbLR7KTdkaBI/decOZ8iYmJeuCBB7Rz507VqVNHkydPvu7+hwwZogEDBqS/j4uLU3h4uKKiotz+0g2bzaaFCxeqZcuW8vX1tbocZIEeeQb65Bnok/ujR56BPnkG+uT+6JFn8JQ+pZ2J74hcBxA+Pj4On2px6tQpBQUF5XZXTuPI5RCOXKaReb7Y2FiZppnlZRiOzJecnKwuXbrojz/+UOXKlbVgwQKH9u/v759+hsWVfH193foP6JU8qdbCih55BvrkGeiT+6NHnoE+eQb65P7okWdw9z7lpLZc34SyRo0a2r9//3UfE7lnzx7t3r1bdevWze2unKZ69eqS7E+vSE5OznLM3r17M4x1ZL7ExEQdPXo0V/OZpqk+ffpo9uzZKleunBYtWuTQWSUAAAAAAHiSXAcQnTp1ks1m00svvaTU1NQsxyQlJenpp5+WYRjq2rVrrot0lvr168vX11cJCQnasGHDVettNpvWrVsnSbrtttuuO19ERET6/S9WrlyZ5Zi05dnN9+yzz2ry5MkqWbKkFi5cqKpVqzr0swAAAAAA4ElyHUA8//zzql27tqZNm6amTZvq888/19mzZyVJS5Ys0X/+8x/Vr19fixYtUv369dW3b1+nFZ1boaGhatGihSTpq6++umr9zJkzFRcXp5IlS6p58+bXnc8wDD344IPZzrdq1Spt375dvr6+at++/VXrX3vtNX366acKCQnRr7/+qjp16uTwJwIAAAAAwDPkOoAIDAzUwoULdfvtt2vNmjV65pln9O+//0qSWrRooZdeeknbtm3T7bffrv/9739uc83Ka6+9JsMw9OWXX2ratGnpyzdv3px+Q8dXXnklw5Mtxo8fr8qVK2d5FsegQYPSHzM6btw4maYpSTpw4EB66PLYY49d9aSQDz74QG+//bYCAwP1v//9T7fccovTf1YAAAAAANxFrm9CKUnly5fXihUr9Msvv+jHH3/UP//8o7Nnzyo4OFg33HCDHnroIT344INZ3pzRKk2bNtWoUaM0bNgwde/eXcOGDVNwcLC2bNmi1NRUtW3bVi+//HKGbWJjY3XgwAFVrlz5qvmqVKmiCRMmqE+fPnrllVf00UcfqUyZMtqyZYtsNpsaNmyocePGZdjm6NGjGjhwoCT7E0KGDh2abb0//PDDNR9zCgAAAACAJ8hTACHZL0No166d2rVr54x68sVrr72mevXq6cMPP9Rff/2l6Oho1a1bV3369NGzzz4rb2/vHM336KOPqlq1ahozZoxWrVqlrVu3KjIyUt26ddPgwYPTH9eZJikpKf1MiePHj+v48ePZzp2QkJDzHxAAAAAAADeT6wDizJkzDj0q0l3lJDQZMWKERowYcc0xTZo00dy5cx2ar3LlyukBBAAAAAAAhUGu7wFRtmxZtW/fXt9//73i4+OdWRMAAAAAAChgch1AmKap//3vf+rRo4fCwsLUo0cPzZ07V8nJyc6sDwAAAAAAFAC5DiBiYmL0+eef684779TFixc1bdo0PfDAAwoLC9OTTz6ppUuXOrFMAAAAAADgyXIdQBQvXlxPPPGElixZokOHDun9999Xw4YNdebMGU2YMEH33nuvKlasqIEDB2r9+vXOrBkAAAAAAHiYXAcQVypXrpxeeuklrV27Vrt379abb76pWrVq6ejRo/rwww912223qWbNms7YFQAAAAAA8EBOCSCuFBkZqWHDhunff//Vpk2b1KpVK5mmqd27dzt7VwAAAAAAwEPk+jGc17J3715NmzZN06ZN07Zt21yxCwAAAAAA4EGcFkBER0dr+vTpmjZtmtatWyfJ/qSMcuXKqUuXLurevbuzdgUAAAAAADxMngKI2NhY/fDDD5o2bZqWLVum1NRUmaapYsWK6aGHHlL37t119913yzAMZ9ULAAAAAAA8UK4DiPbt22vBggWy2WwyTVOBgYFq166dunfvrtatW8vPz8+ZdQIAAAAAAA+W6wDif//7n3x8fBQVFaXu3bvrwQcfVHBwsDNrAwAAAAAABUSuA4iPP/5YXbp0UalSpZxZDwAAAAAAKIByHUA888wzzqwDAAAAAAAUYE55CsbKlSv1xx9/6MiRI0pISNBXX32Vvm7//v1KSkpSjRo1nLErAAAAAADggfIUQOzevVs9evTQ+vXrJdkfu2kYRoYAYuzYsfq///s/LV26VM2aNctbtQAAAAAAwCN55XbDmJgY3XXXXVq3bp1uueUWjRgxQtWqVbtqXO/evWWapmbNmpWnQgEAAAAAgOfKdQDx9ttv69ixY3rmmWf0559/6vXXX1dYWNhV42699VaFhIRo1apVeSoUAAAAAAB4rlwHEP/73/8UFBSk9957T4ZhXHNsZGSkDh06lNtdAQAAAAAAD5frAOLIkSOqXr26/P39rzvW399fZ86cye2uAAAAAACAh8t1ABEcHKwTJ044NPbgwYMqWbJkbncFAAAAAAA8XK4DiPr16+vo0aP6559/rjnujz/+UHR0tG6//fbc7goAAAAAAHi4XAcQ/fr1k2ma6tu3r44dO5blmD179qhv374yDEOPP/54rosEAAAAAACezSe3G3bt2lU//vijfvjhB91www1q1aqVDh48KEkaPny4tmzZonnz5ikpKUk9e/bUfffd57SiAQAAAAD4//buPK6qOv/j+PsiqwiiZpqGIu5LoqiZS+OuuWSaWS6NG9PeZGrqaM64h1upM81Mv3FjzK2yGjXLNcyVcqVMC1DBHRtFAWXn/P7wwX3IAHK53Av34uv5eNzHQ873ez7f7+HTt7yfzvkeOBerCxCStG7dOtWtW1dLlizRp59+aj4+d+5cGYYhd3d3TZo0SXPnzi32RAEAAAAAgPMqVgHC1dVVoaGhmjBhgr7++mv99NNPunXrlipUqKAmTZqob9++euSRR2w1VwAAAAAA4KSKVYDI8dBDD2nEiBEFti9btkwpKSl66623bDEcAAAAAABwMlZvQlkUU6dO1bhx40piKAAAAAAA4IBKpAABAAAAAAAebBQgAAAAAACA3VGAAAAAAAAAdkcBAgAAAAAA2B0FCAAAAAAAYHcUIAAAAAAAgN25WtpxzJgxVg+SnJxs9bn28vXXX+uDDz7QsWPHlJaWpoYNG2r06NF644035OJS9LrMoUOHNG/ePB08eFDJycmqU6eOhg4dqokTJ8rT07PA806fPq05c+bo22+/VUJCgmrWrKmBAwdq2rRp8vPzK8YVAgAAAADgOCwuQISFhclkMskwjCINkHOOyWQq8uTsZd68eZoyZYokKTAwUBUqVFBkZKTeeust7dq1S19++WWRihBr167VyJEjlZWVpZo1a8rf318nT57UX/7yF23ZskV79uxR+fLl85wXHh6uvn37KiUlRVWrVlXTpk31yy+/6P3339eXX36pgwcPqlq1aja7bgAAAAAASovFBYgRI0Y4VBHBWocOHdLUqVPl4uKiNWvWaOjQoZKkyMhI9erVS5s3b9YHH3ygd955x6J4sbGxCgkJUVZWlhYsWKB33nlHJpNJcXFx6tWrlw4fPqxJkybpww8/zHVeUlKSXnjhBaWkpOitt97SokWL5ObmpuvXr+uZZ57RgQMHFBISoq+++srmvwMAAAAAAEpake6AKAvmzJkjwzD00ksvmYsPkhQUFKQPPvhAw4cP17x58zR27Fi5ubkVGm/hwoVKS0tTz549NXHiRPPx2rVra+XKlerQoYP+9a9/6c9//nOuuxk++ugj/fbbb2rcuLE++OADlStXTpJUpUoVrVu3TnXr1tXWrVt17NgxBQcH2/A3AAAAAABAyXugNqFMTEzUrl27JEkhISF52gcPHixfX19dv35d4eHhhcYzDENffvllgfHat2+vRo0aKSMjQ5s2bcrV9sUXX0iSRo0aZS4+5KhVq5a6d+8uSdq4caMFVwYAAAAAgGN7oAoQx48fV3p6ujw9PfO9q8DNzU1t2rSRJH3//feFxjt//ryuXLkiSerQoUO+fXKO3xsvMzNTR48eLfJ5AAAAAAA4K4sfwSgLoqOjJd29w8DVNf9LDwwM1O7du819LYnn4eGhGjVqFBjv3r7S3X0jMjIycrVbcl5ZEXMtSb9cvqXI6yaV+zlerq7lCj8JJS4zM4scOQHy5BzIk+MjR86BPDkH8uT4yJFzyMlTz6xsWbA7gFN4oAoQCQkJkqRKlSoV2CenLaevJfH8/PwK3KAzv3j3/rmguVgyj7S0NKWlpZl/TkxMlCRlZGSYCxyOaPOJS/rrt2ckldPKqMjSng7uixw5B/LkHMiT4yNHzoE8OQfy5PjIkXMop9dS0+RaznEfXijKd88HqgCRmpoqSXJ3dy+wj4eHhyQpJSXFbvFyzrvfuZbMIzQ0VDNnzsxzfMeOHfm+9tNR/HbNpDo+jruAAAAAAMBR7Pk2XO4OfKPKnTt3LO77QBUgPD09JUnp6ekF9sm5o8DLy8tu8XLOyzn33p+LMo8pU6Zo/Pjx5p8TExPl7++vnj17ytfXt9D5l5Y+ulsl27lzp3r06GHR20ZQ8siRcyBPzoE8OT5y5BzIk3MgT46PHDkHZ8lTzp34lnigChCWPNZgyWMa/xvv5s2bMgwj38cw8ot3758TEhL0yCOPWDUPDw8P850S93Jzc3Pof0Dv5UxzfVCRI+dAnpwDeXJ85Mg5kCfnQJ4cHzlyDo6ep6LM7YG6D75+/fqS7r69IjMzM98+Z8+ezdXXknhpaWm6fPmyxfECAgLMScppL848AAAAAABwdA9UAaJly5Zyc3NTamqqjh07lqc9IyNDhw8fliS1bdu20Hi1atVS9erVJUkHDhzIt0/O8Xvjubq6ml8DWpTzAAAAAABwVjYpQNy6dUvHjx/Xvn37tHfv3gI/pc3X11fdu3eXJK1YsSJP+2effabExERVqVJFnTt3LjSeyWTSwIEDC4x38OBB/fLLL3Jzc1P//v1ztT377LOSpLCwMGVlZeVqO3/+vHbt2iVJGjRoUOEXBgAAAACAgytWAWLv3r1q3769KleurNatW6tz587q0qVLvp+uXbvaas7F8u6778pkMmn58uVav369+XhkZKR5Q8dJkyblejvFkiVLFBAQoCFDhuSJN3HiRLm7u2vHjh1auHChDMOQJMXFxWnMmDGSpD/84Q/mOyVyvPrqq3rooYd0+vRpjR8/3vzqkuvXr2vYsGHKzMxU79691apVK9v+AgAAAAAAKAVWb0IZHh6up556ShkZGfLw8FBAQIAefvhhubg49lMdHTp00OzZszVt2jQNGzZM06ZNU4UKFXTy5EllZ2erb9++mjBhQq5zbt68qbi4OAUEBOSJV6dOHS1btkyjR4/WpEmTtHTpUj388MM6efKkMjIy1KpVKy1cuDDPeb6+vtqwYYP69eunv/71r1q/fr1q1aql06dP686dOwoICNDKlSvt9WsAAAAAAKBEWV2AmD59ujIyMjR8+HAtWbJEVapUseW87Ordd99VUFCQFi9erKNHj+rq1at67LHHNHr0aL355psqV65oL1kdMWKE6tWrp9DQUB08eFCnTp1SYGCghg4dqsmTJ+f7mk1J6tatm44cOaI5c+bo22+/1U8//aSaNWtq4MCBmjZtmkVv4gAAAAAAwBlYXYA4duyY/Pz8FBYWVuQv7I6gX79+6tevn0V9Z8yYoRkzZty3T/v27bVly5Yiz6Np06a5HgUBAAAAAKAssvp5CXd3d9WrV88piw8AAAAAAKBkWV2AaNu2rWJjY82bLgIAAAAAABTE6gLE9OnTdevWLS1atMiW8wEAAAAAAGWQ1XtA1KhRQx988IEmTJiggwcPKiQkRHXr1pW3t3eB59SqVcva4QAAAAAAgBOzugAREBAgk8kkwzC0efNmbd68+b79TSaTMjMzrR0OAAAAAAA4MasLELVq1ZLJZLLlXAAAAAAAQBlldQEiNjbWhtMAAAAAAABlmdWbUAIAAAAAAFiKAgQAAAAAALA7qx/ByJGWlqb169drx44dioqKUlJSknx8fNSgQQP16tVLQ4YMkYeHhy3mCgAAAAAAnFSxChDHjh3T4MGDFRsbK8Mw8rR98sknmj17tj799FMFBwcXa6IAAAAAAMB5WV2AuHjxonr06KGEhAQ99NBDeumll9S0aVNVq1ZN8fHx+vnnn7V8+XKdPXtWvXr10okTJ1SzZk1bzh0AAAAAADgJqwsQoaGhSkhI0LPPPquPP/5YXl5eefr8+c9/1u9//3t9/vnnCg0N1YcfflisyQIAAAAAAOdk9SaU33zzjby9vRUWFpZv8UGSPD09tWrVKnl7e+vrr7+2epIAAAAAAMC5WV2AuHz5sho3bqwKFSrct1+FChXUuHFjXblyxdqhAAAAAACAk7O6AOHj46P4+HiL+sbHx8vb29vaoQAAAAAAgJOzugDRqlUrXbx4URs2bLhvv/Xr1+vChQtq3bq1tUMBAAAAAAAnZ3UB4o9//KMMw9DIkSM1YcIEnTt3Llf7uXPnNH78eI0ePVomk0lvvfVWsScLAAAAAACck9UFiL59+2ry5MnKyMjQkiVLVK9ePZUvX161a9dW+fLlVa9ePS1dulTp6en605/+pD59+thy3gAAAAAAwIlYXYCQ7r6Kc/PmzWrXrp1MJpNSU1N14cIFpaamymQyqUOHDtqyZYvmzp1rq/kCAAAAAAAn5FrcAP369VO/fv10+/ZtxcTEKDk5WRUqVFC9evXYeBIAAAAAAEiyQQEih7e3t4KCgmwVDgAAAAAAlCHFegQDAAAAAADAEhbdAbF69WpJUsWKFfXMM8/kOlYUI0aMKPI5AAAAAADA+VlUgBg1apRMJpMaNmxoLkDkHCsKChAAAAAAADyYLCpAjBgxQiaTSY888kieYwAAAAAAAIWxqAARFhZm0TEAAAAAAID8sAklAAAAAACwO6sLEF27dtXbb79tUd9x48apW7du1g4FAAAAAACcnEWPYORnz549yszMtKjviRMntHfvXmuHAgAAAAAATq5EHsFIT09XuXLlSmIoAAAAAADggOxegEhJSVFUVJSqVKli76EAAAAAAICDsvgRjE2bNmnTpk25jkVHR2vMmDEFnpOSkqLDhw/rxo0beu6556yfJQAAAAAAcGoWFyBOnDiR69WbJpNJ8fHxFr2Os379+nrvvfesmZ/NpaamasGCBdqwYYPOnTunChUqqH379poyZYqeeOIJq2JmZ2frww8/1KpVqxQVFSUPDw8FBwdrwoQJ6t27d57+WVlZ2rVrl7766isdOHBA0dHRSk9PV/Xq1dWpUye9/fbbCg4OLu6lAgAAAADgMCwuQAwYMEABAQGSJMMwNGbMGDVo0EBTpkzJt7/JZJKXl5cCAwMVHBwsk8lkkwkXx+3bt9WpUycdPXpU7u7uatq0qa5du6bNmzdr69atWrNmjYYMGVKkmFlZWXrmmWe0detWubi4qFmzZkpKStLu3bu1e/duLVy4UO+8806uc8LCwvSHP/xBkuTq6qoGDRrIzc1NUVFR+vjjj7V+/Xr9/e9/18svv2yzawcAAAAAoDRZXIAICgpSUFCQ+ecZM2YoKChII0eOtMvE7GHChAk6evSoGjVqpG3btql27drKzs7WokWLNHnyZI0ZM0YdOnSQv7+/xTEXLlyorVu3qlq1atq+fbv5d7Ru3Tr9/ve/16RJk9SpUye1adPGfI5hGAoODta4ceM0cOBAeXt7S5ISExM1duxYhYWF6fXXX9cTTzyh5s2b2/aXAAAAAABAKbB6E8rY2Fh98skntpyLXV25ckUrVqyQJK1cuVK1a9eWJLm4uGjSpEnq0aOHUlJStGjRIotjpqena8GCBZKkxYsX5yrQDBs2TCEhITIMQ3PmzMl13qBBg3TkyBG9+OKL5uKDJPn6+mrZsmVq1qyZsrKyzPMFAAAAAMDZlchrOB3B5s2blZmZqcaNG6tdu3Z52kNCQiRJGzdutDhmeHi4EhIS5Ovrm+8mmzkxt2/frqSkJPPxSpUqFfhIiqurq7p27SpJioqKsnguAAAAAAA4MosfwbifiIgIRUZG6saNG8rIyMi3j8lk0p///GdbDGeViIgISVKHDh3ybc85fvnyZV24cMGixzByYj7++ONyc3PL096qVSt5enoqNTVVJ06c0JNPPmnRXFNTUyVJXl5eFvUHAAAAAMDRFasAsXfvXoWEhOjs2bP37WcYRqkXIKKjoyVJgYGB+bbXrFlT7u7uSk9PV3R0tEUFiMJiurq6yt/fX9HR0YqOjraoAJGamqrNmzdLKrhYAgAAAACAs7G6AHHq1Cn17t1bGRkZGj58uL777jtdvHhRU6dO1YULFxQZGanIyEh5eXnptddek4+Pjy3nXWQJCQmS7j7+kB+TySQ/Pz9du3bN3Le4Me9tszTmrFmzdPXqVVWuXNn8CEdB0tLSlJaWZv45MTFRkpSRkVHgnSiOImd+jj7PBxk5cg7kyTmQJ8dHjpwDeXIO5MnxkSPn4Cx5Ksr8rC5AzJs3T6mpqVq+fLlGjx6tJ598UhcvXtTs2bPNfXbs2KGQkBBt375dhw4dsnYom8h5rMHd3b3APh4eHpKklJSUUom5detWzZs3T5L00Ucfyc/P7779Q0NDNXPmzDzHd+zYofLlyxc6niPYuXNnaU8BhSBHzoE8OQfy5PjIkXMgT86BPDk+cuQcHD1Pd+7csbiv1QWIPXv2qGLFivd9DWfPnj31xRdfqG3btpo1a5b5jRFFNWnSJPNjCUWxatUq84aTnp6eku6+uaIgOXcTWLr3gi1jHjlyREOGDJFhGJoyZYoGDx5c6PhTpkzR+PHjzT8nJibK399fPXv2lK+vryWXUGoyMjK0c+dO9ejRI9/9M1D6yJFzIE/OgTw5PnLkHMiTcyBPjo8cOQdnyVPOnfiWsLoAce3aNTVp0kQuLndfpOHqejdUSkpKri/bbdq0UcOGDfXFF19YXYC4fPmyfv311yKfd/v2bfOfC3sUwjAM3bx5M1ffwljyeIUlj2mcPn1avXv3VnJysl5++WW99957Fo3v4eFhvsPiXm5ubg79D+i9nGmuDypy5BzIk3MgT46PHDkH8uQcyJPjI0fOwdHzVJS5Wf0azooVKyorK8v8c+XKlSVJcXFxefq6u7vr0qVL1g6lNWvWyDCMIn+6d+9ujlG/fn1JKnDDzEuXLpnvZMjpW5jCYmZmZur8+fP3jRkbG6sePXrov//9r4YMGaJ//vOfFo0NAAAAAIAzsboAUatWLV25csX882OPPSZJ2rJlS65+sbGx+vXXX0v9kYC2bdtKkg4cOJBve87xGjVqWPQGjHtj/vDDD/luvHH06FGlpaXJ3d1dLVq0yNN+9epVde/eXZcuXVK/fv20evVq8x0lAAAAAACUJVZ/2+3SpYuuX7+u2NhYSdLQoUNlMpn07rvvatq0adq6datWrlypnj17KiMjQ3369LHVnK3Sv39/ubq66vTp0/luiLlixQpJ0qBBgyyO2aVLF1WqVEmJiYnauHFjgTF79eqV5y0gN27cUI8ePXTmzBl16dJFn332mUPfVgMAAAAAQHFYXYAYNGiQAgMDtX//fklSw4YNNXv2bGVmZio0NFT9+/fXSy+9pJiYGNWpU8f8dofSUqNGDY0ePVqSNGbMGPOjIoZhaOHChdq5c6c8PT31zjvv5Dm3Y8eOCggIyFNk8PDwMPcfP368IiMjzW3r1q3TihUrzEWZe92+fVt9+/bVyZMn1bZtW23evNm8oSUAAAAAAGWR1ZtQtm3bVtHR0bmOTZkyRR07dtTatWsVGxsrLy8vdezYUS+//HKeOwBKw/vvv68jR47o+PHjatCggZo2bapr167p0qVLKleunJYvX65atWrlOe/ixYuKi4tTcnJynrZJkyZp37592rZtm4KDg9WsWTMlJyeb94UIDQ01P6qR469//asiIiIk3S1GPPXUU/nOt2XLlvrb3/5W3MsGAAAAAKDUWV2AKMiTTz6pJ5980tZhbcLHx0cHDhzQggULtH79ep06dUoVKlTQ008/rSlTpphf2VkUrq6u+uqrr/Thhx9q1apVio6Olpubm7p27arx48erb9++ec7JeTWnJJ08efK+sQEAAAAAKAseuG+4Xl5emj59uqZPn27xOTn7XBSkXLlyGjt2rMaOHWtRvBkzZmjGjBkWjw8AAAAAgLPjlQsAAAAAAMDurL4DIjAwsEj9TSaTzpw5Y+1wAAAAAADAiVldgCjssYQcJpNJhmHIZDJZOxQAAAAAAHByVhcgzp07V2Db7du3FRMTo2XLlmnHjh1avHhxvpsxAgAAAACAB4PVBYjatWvft71Jkybq37+/5s2bp3Hjxik4OLjQcwAAAAAAQNlk900oJ02aJF9fX82cOdPeQwEAAAAAAAdl9wKEi4uL6tSpo4iICHsPBQAAAAAAHJTdCxCZmZmKiYlRZmamvYcCAAAAAAAOyq4FiISEBL300ku6efOmgoOD7TkUAAAAAABwYFZvQtm1a9cC2wzD0G+//aazZ88qNTVVbm5u7AEBAAAAAMADzOoCxJ49eyzq9/jjj2v+/Pnq1KmTtUMBAAAAAAAnZ3UBIjw8vMA2k8kkb29vBQYGqlKlStYOAQAAAAAAygirCxDc0QAAAAAAACxl9SaUq1ev1vbt2y3qu2PHDq1evdraoQAAAAAAgJOzugAxatQovffeexb1DQ0N1ejRo60dCgAAAAAAOLlivYbTMAyb9gMAAAAAAGVTsQoQlrp69aq8vb1LYigAAAAAAOCALN6E8vz584qNjc117NatW9q7d2+B56SkpOi7775TVFSU2rZta/UkAQAAAACAc7O4ALFq1SrNmjUr17GTJ0+qS5cu9z0v5/GLt99+u+izAwAAAAAAZYLFBYiAgAD97ne/M//83XffydfXVy1atMi3v8lkkpeXlwIDA/XCCy+oY8eOxZ4sAAAAAABwThYXIEaOHKmRI0eaf3ZxcdFjjz2m8PBwu0wMAAAAAACUHRYXIP5XeHi4KlasaMu5AAAAAACAMsrqAkSnTp1sOQ8AAAAAAFCGWf0azr1796pr1676v//7v/v2++ijj9S1a1cdOHDA2qEAAAAAAICTs7oAsXz5cn333Xdq167dffu1a9dOe/bs0cqVK60dCgAAAAAAODmrCxARERGqXLmymjdvft9+QUFBqlKlCndAAAAAAADwALO6AHHp0iUFBARY1DcgIECXLl2ydigAAAAAAODkrC5AuLu7KykpyaK+SUlJcnGxeigAAAAAAODkrK4KNGrUSNHR0YqKirpvv6ioKEVFRalBgwbWDgUAAAAAAJyc1QWIQYMGyTAMjRgxQjdv3sy3z82bNzVy5EiZTCYNHjzY2qEAAAAAAICTc7X2xDfeeEMrV67U4cOH1bhxY4WEhKht27by8/PTzZs3FRERoZUrVyo+Pl6NGjXSH//4R1vOGwAAAAAAOBGrCxBeXl7avn27Bg4cqGPHjik0NDRPH8Mw1Lp1a33++efy8vIq1kQBAAAAAIDzsroAIUn+/v764Ycf9MUXX2jTpk06ffq0EhMT5ePjo6ZNm2rAgAEaMGAAG1ACAAAAAPCAK3ZlwMXFRc8995w+/vhjHTlyRFFRUTp69KhWr16tZ5991uGKD6mpqZo1a5aaNGkiLy8vVa1aVc8884wiIiKsjpmdna2//vWvatmypby9vVW5cmV1795d33zzTZHivPjiizKZTDKZTFqzZo3V8wEAAAAAwNHYvTpw6dIlLViwQM2bN7f3UIW6ffu2OnbsqOnTp+vMmTNq3LixPDw8tHnzZnXs2FEbNmwocsysrCz1799fY8eO1Y8//qh69erJz89Pu3fvVp8+fbRo0SKL4uzatUtr164t8vgAAAAAADgDuxQgkpOT9e9//1vdu3dX7dq1NWXKFP3888/2GKpIJkyYoKNHj6pRo0aKiorSsWPHdP78ec2fP19ZWVkaM2aMLly4UKSYCxcu1NatW1WtWjUdO3ZMkZGROnv2rNauXSsXFxdNmjRJhw8fvm+M1NRUvfbaa6pRo4aCg4OLc4kAAAAAADgkmxUgsrOztW3bNg0fPlzVq1fXmDFj9O233yo7O1stWrSw+E4Ae7ly5YpWrFghSVq5cqVq164tSeYiQY8ePZSSklKkeaanp2vBggWSpMWLFysoKMjcNmzYMIWEhMgwDM2ZM+e+cebMmaOYmBgtXrxYPj4+Rb00AAAAAAAcXrELEMePH9f48eNVs2ZN9e3bV+vXr9edO3fk7u5uvvPh6NGjGjdunC3ma7XNmzcrMzNTjRs3Vrt27fK0h4SESJI2btxocczw8HAlJCTI19dXzz33XIExt2/frqSkpHxjnD59WgsXLlSPHj30/PPPWzw2AAAAAADOxKoCxMWLFzV//nw1a9ZMrVu31tKlSxUfHy8/Pz+9/PLLkqRKlSpp7ty5aty4sU0nbK2cTSY7dOiQb3vO8cuXL1v8GEZOzMcff1xubm552lu1aiVPT0+lpaXpxIkTedoNw9Arr7wik8mkv//97xaNCQAAAACAM7K4AJGcnKywsDB169ZNAQEBmjp1qk6dOiVPT08999xz+s9//qOrV6/qo48+sud8rRYdHS1JCgwMzLe9Zs2acnd3z9W3uDFdXV3l7+9fYMwVK1Zo3759mjhxourXr2/RmAAAAAAAOCNXSztWq1ZNqampMgxD5cqVU7du3TR8+HA9++yzqlChgj3naBMJCQmS7t6ZkR+TySQ/Pz9du3bN3Le4Me9t+9+Yv/32myZPnqw6depo6tSpFo33v9LS0pSWlmb+OTExUZKUkZGhjIwMq2KWlJz5Ofo8H2TkyDmQJ+dAnhwfOXIO5Mk5kCfHR46cg7PkqSjzs7gAkZKSIpPJpEqVKunDDz/UkCFDZDKZrJpgaUhNTZUk810O+fHw8JB091rtHXPcuHG6ceOGVq9eLS8vL4vG+1+hoaGaOXNmnuM7duxQ+fLlrYpZ0nbu3FnaU0AhyJFzIE/OgTw5PnLkHMiTcyBPjo8cOQdHz9OdO3cs7mtxAaJp06b6+eeflZCQoBdffFETJ07UCy+8oGHDhqlVq1ZWTdRSkyZN0ubNm4t83qpVq8wbTnp6ekq6++aKguTcTWBpQcDamLt379batWs1YMAA9e3b16Kx8jNlyhSNHz/e/HNiYqL8/f3Vs2dP+fr6Wh23JGRkZGjnzp3q0aNHvvtnoPSRI+dAnpwDeXJ85Mg5kCfnQJ4cHzlyDs6Sp5w78S1hcQHip59+UmRkpFavXq0NGzbo8uXLWrJkiZYsWaJ69epp+PDhGjZsmOrVq2fVpO/n8uXL+vXXX4t83u3bt81/LuhRiByGYejmzZu5+hamsJj3tuX0zczM1Kuvvqry5ctryZIlFo1TEA8PD/MdFvdyc3Nz6H9A7+VMc31QkSPnQJ6cA3lyfOTIOZAn50CeHB85cg6OnqeizK1Ib8EICgrS+++/rwsXLmjbtm0aMmSIvLy8FB0drZkzZ6phw4Zq06ZNkSdcmDVr1sgwjCJ/unfvbo6Rs8nj2bNn8x3j0qVL5jsZLN0QsrCYmZmZOn/+fK6+ycnJiomJUWZmptq2bavq1avn+hw8eFCS9Oabb6p69ep69tlnLZoLAAAAAACOzKrXcLq4uKhnz55au3at4uPjtWrVKnXp0kUmk0lHjx6VJF27dk3dunVTWFiYkpKSbDppa7Rt21aSdODAgXzbc47XqFHD/OYKS2P+8MMP+W68cfToUaWlpcnd3V0tWrTI1Zaenq74+Pg8n5w4t27dUnx8vG7cuGHRXAAAAAAAcGRWFSDu5e3trZEjR2rXrl06f/685s2bp2bNmik7O1vh4eEKCQlR9erVNXToUFvM12r9+/eXq6urTp8+rUOHDuVpX7FihSRp0KBBFsfs0qWLKlWqpMTERG3cuLHAmL169ZKPj48kyc/P7753bXTq1EmS9PHHH8swDO3Zs6eolwoAAAAAgMMpdgHiXjVq1NCkSZP0448/6tixY3r77bdVrVo1paSk6NNPP7XlUFbNbfTo0ZKkMWPGKC4uTtLdvR8WLlyonTt3ytPTU++8806eczt27KiAgIA8RQYPDw9z//HjxysyMtLctm7dOq1YsUImk0nvvvuuvS4LAAAAAACnYPEmlEXVokULtWjRQosWLdKOHTu0Zs0aew1lsffff19HjhzR8ePH1aBBAzVt2lTXrl3TpUuXVK5cOS1fvly1atXKc97FixcVFxen5OTkPG2TJk3Svn37tG3bNgUHB6tZs2ZKTk427wsRGhpqflQDAAAAAIAHlU3vgMh3ABcXPfXUUw5RgPDx8dGBAwc0Y8YM1alTR6dOnVJqaqqefvpp7du3T8OHDy9yTFdXV3311VdasmSJHnvsMcXExOj69evq2rWrvvrqK/3pT3+yw5UAAAAAAOBc7HYHhKPy8vLS9OnTNX36dIvPiY2NvW97uXLlNHbsWI0dO7aYsxN7PgAAAAAAyiS73wEBAAAAAABAAQIAAAAAANgdBQgAAAAAAGB3FCAAAAAAAIDdUYAAAAAAAAB2RwECAAAAAADYHQUIAAAAAABgdxQgAAAAAACA3VGAAAAAAAAAdkcBAgAAAAAA2B0FCAAAAAAAYHcUIAAAAAAAgN1RgAAAAAAAAHZHAQIAAAAAANgdBQgAAAAAAGB3FCAAAAAAAIDdUYAAAAAAAAB2RwECAAAAAADYHQUIAAAAAABgdxQgAAAAAACA3VGAAAAAAAAAdkcBAgAAAAAA2B0FCAAAAAAAYHcUIAAAAAAAgN1RgAAAAAAAAHZHAQIAAAAAANgdBQgAAAAAAGB3rqU9AdiOYRiSpMTExFKeSeEyMjJ0584dJSYmys3NrbSng3yQI+dAnpwDeXJ85Mg5kCfnQJ4cHzlyDs6Sp5zvnznfR++HAkQZkpSUJEny9/cv5ZkAAAAAAB4kSUlJqlix4n37mAxLyhRwCtnZ2bp8+bJ8fHxkMplKezr3lZiYKH9/f124cEG+vr6lPR3kgxw5B/LkHMiT4yNHzoE8OQfy5PjIkXNwljwZhqGkpCTVqFFDLi733+WBOyDKEBcXFz366KOlPY0i8fX1dejFBHLkLMiTcyBPjo8cOQfy5BzIk+MjR87BGfJU2J0POdiEEgAAAAAA2B0FCAAAAAAAYHcUIFAqPDw8NH36dHl4eJT2VFAAcuQcyJNzIE+Ojxw5B/LkHMiT4yNHzqEs5olNKAEAAAAAgN1xBwQAAAAAALA7ChAAAAAAAMDuKEAAAAAAAAC7owABAAAAAADsjgIEiu3rr79W9+7dVblyZXl7eys4OFh/+9vflJ2dbVW8Q4cO6ZlnnlHVqlXl5eWlJk2aaPbs2UpNTbXxzB8stsrTjBkzZDKZ7vv55Zdf7HQVZde5c+e0bNkyvfTSSwoKCpKrq6tMJpPmzJlTrLisJ9uxdY5YS7ZnGIb279+viRMn6oknnpCfn5/c3d1Vo0YNDRo0SOHh4VbHZi3Zjj3yxHqyj//85z965ZVX1KpVKz3yyCNyd3eXn5+f2rdvr6VLlyo9Pd2quKwn27F1jlhLJWPatGnm36e1f49w2nVkAMUQGhpqSDIkGYGBgUbz5s0NFxcXQ5LRv39/Iysrq0jx1qxZY5QrV86QZNSsWdNo2bKl4ebmZkgy2rRpY9y+fdtOV1K22TJP06dPNyQZ/v7+RocOHfL9xMXF2fFqyqaxY8eac3TvZ/bs2VbHZD3Zlq1zxFqyvV27dpnz4uLiYjRo0MBo2bKlUaFCBfPxadOmFTkua8m27JEn1pN9dOjQwZBkeHh4GHXq1DFat25t1KxZ05ynVq1aGQkJCUWKyXqyLVvniLVkf6dOnTLc3d2L9fcIZ15HFCBgtYMHDxomk8lwcXEx1q1bZz5+4sQJo1q1aoYkY+HChRbHO3funOHh4WFIMhYsWGBkZ2cbhmEYsbGxRsOGDQ1JxhtvvGHz6yjrbJ2nnP8wTZ8+3Q6zfXDNnj3b6NevnzFr1izjm2++MQYNGlSsL7esJ9uzdY5YS7a3c+dOo169esY//vEP48aNG+bjaWlpxpQpU8x/2duyZYvFMVlLtmePPLGe7GPVqlVGeHi4kZ6enuv4oUOHjEcffdSQZLz++usWx2M92Z6tc8Rasq/s7GzjySefNLy9vY2uXbta9fcIZ19HFCBgtT59+hiSjJdffjlP29q1aw1JRpUqVfL8C7Egr7/+uiHJ6NmzZ562AwcOGJIMNzc34+rVq8We+4PE1nniP0wlY+TIkcX6cst6sr/i5oi1ZHu3bt0yMjIyCmzv3bu3+c4vS7GWbM8eeWI9lbxPP/3UkGTUqFHD4nNYTyXLmhyxluxr2bJlhiRj/vz5Vv89wtnXEXtAwCqJiYnatWuXJCkkJCRP++DBg+Xr66vr169b9CynYRj68ssvC4zXvn17NWrUSBkZGdq0aVMxZ//gsHWe4BxYT3hQ+fr6ytXVtcD2Hj16SJKioqIsisdasg9b5wmlo1GjRpKkO3fuWNSf9VTyipoj2Ndvv/2myZMnq0mTJho3bpxVMcrCOqIAAascP35c6enp8vT0VHBwcJ52Nzc3tWnTRpL0/fffFxrv/PnzunLliiSpQ4cO+fbJOW5JPNxl6zzdKzw8XIMHD1bXrl313HPPacGCBbp69apN5o3iYT05F9ZSycnZmMvLy8ui/qyl0lHUPN2L9VRyDh06JEn5/v0iP6ynklfUHN2LtWR748aN040bN/SPf/xDbm5uVsUoC+uo4PIzcB/R0dGSpFq1ahX4fzECAwO1e/duc19L4nl4eKhGjRoFxru3Lwpn6zzda+/evbl+/vzzzzVjxgz94x//0KhRo6yaL2yD9eRcWEslwzAMffbZZ5IK/kvb/2ItlTxr8nQv1pN9ZWVl6cqVK9q8ebP+9Kc/ydvbW6GhoRady3oqGcXJ0b1YS7a1e/durV27Vi+++KI6depkdZyysI64AwJWSUhIkCRVqlSpwD45bTl9LYnn5+cnk8lU7Hi4y9Z5kqRHHnlEU6dO1eHDh3X9+nXduXNHBw4cUO/evZWSkqIxY8Zoy5YtxZ88rMZ6cg6spZK1bNkyHT9+XO7u7nr77bctOoe1VPKsyZPEerK3JUuWyGQyydXVVf7+/nrjjTfUrVs3RURE6PHHH7coBuvJvmyRI4m1ZA+pqal69dVXVbFiRS1atKhYscrCOqIAAavk3B7p7u5eYB8PDw9JUkpKSonHw132+L2+8sormjt3rlq3bq3KlSvLy8tL7du319atWzVw4EAZhqFx48bJMIziXwCswnpyDqylknPs2DGNHTtWkjRnzhzVrVvXovNYSyXL2jxJrCd7q1mzpjp06KDHH39c1apVk3T3Fv3169crKyvLohisJ/uyRY4k1pI9zJkzRzExMZo7d645N9YqC+uIAgSs4unpKUlKT08vsE9aWpoky57htHU83FWSv1eTyaR58+ZJks6cOaMff/yxWPFgPdaTc2Mt2da5c+fUr18/paamatiwYXrnnXcsPpe1VHKKk6f7YT3ZxuDBg7V//359//33unr1qiIiIhQQEKD33ntPb775pkUxWE/2ZYsc3Q9ryTqnT5/WwoULFRwcrNdee63Y8crCOqIAAatYcmuPJbf//2+8mzdvFlhRLUo83GXrPBWmQYMGqly5siQpJiam2PFgHdaT82Mt2cbVq1fVo0cPXblyRX379lVYWFiBt6zmh7VUMoqbp8Kwnmyvbdu2+vrrr+Xh4aF//etfiouLK/Qc1lPJsiZHhWEtFd3rr7+uzMxM/fOf/5SLS/G/epeFdUQBAlapX7++pLs7sWZmZubb5+zZs7n6WhIvLS1Nly9fLnY83GXrPFkiZ1ffgsaD/bGeygbWUvHcuHFDPXr00JkzZ9SpUyd99tlnRd51nLVkf7bIkyVYT7ZXo0YNtWjRQtnZ2YqMjCy0P+up5BU1R5ZgLRXN8ePHZTKZ1L9/f1WvXj3X55NPPpEkzZ8/X9WrVze/me5+ysI6ogABq7Rs2VJubm5KTU3VsWPH8rRnZGTo8OHDku5WYAtTq1YtVa9eXZJ04MCBfPvkHLckHu6ydZ4K89///lfXrl2TJD366KPFjgfrsJ6cH2upeJKTk9WnTx+dPHlSbdq00ZYtW6y6FZW1ZF+2ylNhWE/2k/Ml1JIvo6yn0lGUHBWGtWSdrKwsxcfH5/nk7OeQnJys+Ph4/fbbb4XGKgvriAIErOLr66vu3btLklasWJGn/bPPPlNiYqKqVKmizp07FxrPZDJp4MCBBcY7ePCgfvnlF7m5ual///7Fm/wDxNZ5KswHH3wgwzBUsWJFi6q4sA/Wk/NjLVkvLS1NzzzzjL7//ns1bdpU27Ztk4+Pj1WxWEv2Y8s8FYb1ZB+xsbHm/6seFBRUaH/WU8krao4Kw1oqupxHJfL7jBw5UpI0e/ZsGYah2NjYQuOViXVkAFbav3+/YTKZDBcXF2PdunXm4ydOnDCqVatmSDLmz5+f65zFixcbtWvXNl544YU88c6ePWu4u7sbkowFCxYY2dnZhmEYRmxsrNGwYUNDkvHaa6/Z96LKIFvm6eTJk8Zrr71mnDx5MtfxlJQUY+7cuYaLi4shyXjvvffsd0EPiJEjRxqSjNmzZxfYh/VUuoqTI9aSfWRmZhoDBgwwJBl169Y1Ll++bNF5rKWSZes8sZ7s48iRI8Zf/vIX48yZM3navvnmG6NRo0aGJKNPnz652lhPJcfWOWItlaz7/T2iLK8jChAoljlz5hiSDElGYGCg0bx5c/O/nPr27WtkZmbm6j99+nRDktGpU6d84/373/82n1+zZk2jZcuWhpubmyHJaNWqlZGcnFwCV1X22CpPx48fN8epWrWq0apVK6NVq1ZG+fLlzcdDQkLM/yKE5fbv329UqVLF/PHw8DAkGeXLl891/Pz58+ZzWE8ly5Y5Yi3Zx7p168y/v/r16xsdOnTI9/Pcc8/lOo+1VLJsnSfWk32Eh4ebf3/Vq1c3WrdubTRv3tzw8/MzH2/Tpo3x22+/5TqP9VRybJ0j1lLJul8BoiyvI1crbpoAzN59910FBQVp8eLFOnr0qK5evarHHntMo0eP1ptvvqly5coVKd6IESNUr149hYaG6uDBgzp16pQCAwM1dOhQTZ482fzqGRSNrfIUEBCg2bNnm2/v+vXXX5Wenq6HH35Yffr00R/+8Af16tXLzldTNmVkZOj69et5jt+5c0d37twx/1yUd3mznmzLljliLdlHzqvHJCk6OlrR0dH59qtdu3aR4rKWbMvWeWI92UdQUJCWLl2q3bt36+eff9Yvv/yi9PR0ValSRe3atdPzzz+vF198Ua6uRfs6wXqyHVvniLXkPJx5HZkMo4D3dwAAAAAAANgIm1ACAAAAAAC7owABAAAAAADsjgIEAAAAAACwOwoQAAAAAADA7ihAAAAAAAAAu6MAAQAAAAAA7I4CBAAAAAAAsDsKEAAAAAAAwO4oQAAAAAAAALujAAEAAOyuc+fOMplM2rNnT2lPxeHMmDFDJpMp1yc2NrZYMf38/HLFGzVqlE3mCgBAcbiW9gQAAIBzMJlMRT6nU6dOZb7ocPPmTS1ZskR+fn56++23rY7j7++vWrVqSZI8PT2LNad27dopKSlJ165dU3R0dLFiAQBgKxQgAACARTp06JDn2K1bt3Ty5MkC2x977DFJUq1atdSwYUOVL1/evpMsBTdv3tTMmTNVu3btYhUgxowZoxkzZthkTt98840kKSwsTKNHj7ZJTAAAiosCBAAAsMj+/fvzHNuzZ4+6dOlSYHuO1atX221eAADAObAHBAAAAAAAsDsKEAAAwO4K2oRy1KhRMplMCgsLU1xcnF588UVVq1ZNFSpUULt27bRz505z359++kmDBg3Sww8/rPLly+t3v/udIiIiChwzMzNTH330kTp27Cg/Pz95enqqUaNGmjZtmhITE21yXaNGjVKdOnUkSXFxcXk2k7SV27dva9asWWrevLm8vb3l6ekpf39/de7cWfPmzVNGRobNxgIAwF54BAMAAJS6c+fOaeLEiUpJSVGjRo0UFxeniIgI9enTR9u3b5e7u7ueeuopubm5qW7duoqJidG+ffvUrVs3/fDDD2ratGmueImJiXr66ae1d+9eubi4yN/fXz4+PoqKitLcuXP1xRdfaM+ePXr44YeLNe8GDRqodevWOnLkiDw8PNS6detixctPZmamunfvroiICLm4uKh+/fry8fHR5cuXtW/fPn333Xd69dVX5efnZ/OxAQCwJe6AAAAApS40NFTdu3fXlStXdOTIEcXHx+v1119XZmamxo8fr9///vd65ZVXFB8fb25/+umndefOHc2aNStPvFdeeUV79+5Vt27dFB0drdjYWP3000+6evWqnn32WZ0+fVpvvPFGsec9depUffbZZ5Kk6tWra//+/bk+trBp0yZFREQoKChIcXFx+uWXX3T48GFdunRJV69e1ZIlS+Tu7m6TsQAAsCcKEAAAoNQ99NBDWrFihXx8fCRJLi4ueu+99+Tp6anIyEhVqlRJixYtMn/R9vDw0MKFCyVJ27ZtyxXrxx9/1IYNG1S7dm19+eWXCgwMNLdVqlRJH3/8sfz9/fX5558rLi6uhK7Qejmv0RwzZoweffTRXG1Vq1bV2LFjy+TbRQAAZQ8FCAAAUOqGDh2a50t0xYoVzfsrjB49Os+eCg0bNpSXl5cSExN1/fp18/Evv/xSkvT888+bCxr3Kl++vLp37y7DMLRv3z5bX4rN+fv7S5K2bt2qO3fulPJsAACwHntAAACAUle3bt18j1etWlWnT5++b/v58+eVnJysKlWqSLq7WaV0txBx8ODBfM/LufPh0qVLxZ263Q0YMEABAQHasWOHatSooaeeekpPPvmkOnfunGfvCwAAHBkFCAAAUOoKeoQg566HwtoNwzAfu3XrliQpJiZGMTEx9x03JSWlyHMtad7e3tq3b5/+8pe/aOPGjfrkk0/0ySefSJKaNGmi+fPnq1+/fqU8SwAACscjGAAAoEypUKGCJGnZsmUyDOO+nxkzZpTuZC306KOPauXKlbpx44YiIiI0b948tW7dWqdOndKAAQP0/fffl/YUAQAoFAUIAABQpjRp0kSSdPLkyRIZ73/3prAnV1dXtW3bVpMnT9bhw4c1ZMgQZWVlaeXKlSU2BwAArEUBAgAAlCkDBw6UJK1ZsybX5pT24uXlJal0Hud44oknJEmXL18u8bEBACgqChAAAKBMad26tZ5//nldv35dPXr00PHjx3O1Z2Vlac+ePRo+fLjS0tJytXXu3Fkmk6lIj2ZUrVpVPj4+unbtmk6fPm2LS8hl8eLFWrJkieLj43MdP3/+vJYvXy5JCg4Otvm4AADYGptQAgCAMmfFihVKSEjQzp07FRwcrFq1aumRRx7RnTt3FBMTY75bYcWKFcUey2QyafDgwVq5cqWCg4PVrFkzeXt7S5L27NlT7PhxcXFaunSpxo0bp4CAAD388MNKTExUdHS0srKy1KxZM40fP77Y4wAAYG8UIAAAQJlToUIFbdu2TRs2bNDq1at19OhRHTt2TA899JCaN2+uzp07a9CgQfL09Mx13tWrVyVJLVq0KNJ4S5culY+PjzZt2qTIyEhlZGTY6lL06quvqlKlSvr222915swZnThxQpUqVVKbNm00fPhwhYSEmB8DAQDAkZmMe99bBQAA8IC6fv26qlatqsDAQEVFRcnFpWSeVJ0xY4Zmzpyp6dOn2/ytHGFhYRo9erRGjhypsLAwm8YGAKCouAMCAABA0sGDB2UYhsaNG1dixYd7rVy5Urt27ZIkbdy4UdWrV7c6Vu/evZWUlKRr167ZanoAABQbBQgAAADdLUBUqlRJo0aNKpXxL1y4oAsXLkiSUlNTixXr0KFDunXrli2mBQCAzfAIBgAAAAAAsDtewwkAAAAAAOyOAgQAAAAAALA7ChAAAAAAAMDuKEAAAAAAAAC7owABAAAAAADsjgIEAAAAAACwOwoQAAAAAADA7ihAAAAAAAAAu6MAAQAAAAAA7I4CBAAAAAAAsDsKEAAAAAAAwO7+H5MytCfjpIt1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pyplot.figure(figsize=(12,8))\n", "\n", "pyplot.subplot(2,1,1)\n", "pyplot.plot(t_CL, len(t_CL)*[th_des], label=\"Setpoint\")\n", "pyplot.plot(t_CL, y_CL[:,2], label=\"Output\")\n", "pyplot.ylabel('Motor Position, [rad]')\n", "pyplot.legend(loc='lower right')\n", "pyplot.grid()\n", "\n", "pyplot.subplot(2,1,2)\n", "pyplot.plot(t_CL, y_CL[:,0])\n", "pyplot.xlabel('Time, t [s]')\n", "pyplot.ylabel('Actuation Level, [V]')\n", "pyplot.grid()" ] }, { "cell_type": "code", "execution_count": null, "id": "9a9498e3", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 5 }